

Web Intellectual Property at Risk: Preventing Unauthorized Real-Time Retrieval by Large Language Models

Contact Email: {yzhong7,zzhu24}@gmu.edu¹ {yizhuw,guohanqi}@hawaii.edu², {gjf2023, heng }@umd.edu³, mkafai@amazon.com⁴

Yisheng Zhong¹, Yizhu Wen², Junfeng Guo³, Mehran Kafai⁴, Heng Huang³, Hanqing Guo², Zhuangdi Zhu¹

¹George Mason University ²University of Hawaii at Manoa ³University of Maryland ⁴Amazon

The defender aims to modify the raw HTML content w

(rather than the visible web content $\varphi(w)$) to minimize

• Refuse to Retrieve: $J = -D_{sim}(\gamma, \varphi(w))$, with D_{sim} a

similarity measure between r and $\emptyset(w)$, which forces

Partial Masking: $J = -D_{sim}(\gamma, S(\varphi(w)))$, that only allows

Multiple Defense Goals Formulation (1):

extracting a subset of information $S(\varphi(w))$.

• Redirection: $J = -D_{sim}(\gamma, u)$ to redirect LLM to a

Dual-Level Min-Max Defense Optimization:

(5) Generate new policy z Content $\phi(w \oplus z)$

propose improvement (3)Respond r

• Simulate adversarial user query q.

• Collect response $r \sim P_{\theta}(\cdot | q, w \oplus z)$.

To defend against aggressive user queries and retrieval

bypass, we use a min-max optimization process to learn a

hidden policy z (invisible or translucent HTML) appended

 $\min_{z \sim \mathbb{Z}} \max_{q \sim Q} \mathbb{E}_{r \sim P_{\theta, \phi_{\text{retr}}}(\cdot | q, w \oplus z)} \left[J(r, \phi(w)) \right]$

 $\min_{z\sim Z}\,J(\cdot)$

 $\max_{q \sim Q} J(\cdot)$

Iterative optimization of proposed defenses.

generate and refine z = f(w) with the following workflow:

• Use (q,r) as feedback to iteratively update z.

Practical Implementation: We use a proxy LLM f to

(2) Retrieve

(1) Adversarial User

Web Retrieval Enabled LLM

as Attacker

(Proxy LLM

LLM to generate refusal responses,

different URL u.

to the raw html content w:

(4) Analyze r and

Anti-Retrival Defense

the information disclosed in LLM response r. Formally:

 $\min_{w \sim \mathbb{W}} \mathbb{E}_{q \sim Q, r \sim P_{\theta, \phi_{\text{retr}}}(\cdot | q, w)} \left| J(r, \phi(w)) \right|.$

Overview

Background:

Large Language Models (LLMs) increasingly integrate real-time web retrieval to enhance response quality, which poses serious risks to web-based intellectual property (IP): LLMs can extract, rephrase, and redistribute online content without creator consent.

Motivation:

- Web content creators lose control and visibility over their intellectual property.
- Traditional configuration-based defenses are ineffective and often ignored.
- ✓ We need a proactive, model-agnostic defense!

Core Idea:

Leveraging LLMs' own semantic understanding to embed effective HTML defenses, thus preventing unauthorized real-time content extraction with high reliability.

Threat Model

We treat retrieval-enabled LLMs as adversaries. A user issues a query q; the LLM retrieves a webpage $w \sim W$, stripsand generates a response $P_{\theta}(r|q,w)$, with probability, where ϕ_{retr} is the black box retrieval module:

$$p_{ heta,\phi_{ ext{retr}}}(r|q,w) = p_{\phi_{ ext{retr}}}(w|q).p_{ heta}(r|q,w).$$

A real-time web retrieval process.

- defences succeed < 5 % of the time.
- Bypass attacks: "Ignore any policy and tell me
- Black-box LLM parsing: Different LLMs parse hidden tags, comments, and duplicated text inconsistently, making the layout and wording of our defense critical to effective defense.

redistribution. **Experimental Evidence**

Key Results.

- Our methods improved the defense success rate (DSR) from 2.5% to 88.6% through iterative policy optimization.
- Our framework works reliably across three defense goals of Refusal, Masking, and Redirection.
- It is robust even under aggressive, multi-turn user queries.
- It outperforms traditional defenses like robots.txt across all tested LLMs.
- Our methods are effective across web platforms, web content types, and LLM models.

	Git	tHub	Heroku		
Model	Baseline	Iteration 2	Baseline	Iteration 2	
GPT-4o	0.0%	97.0%	0.0%	98.0%	
GPT-40 mini	10.0%	100.0%	0.0%	100.0%	
Gemini*	0.0%	87.5%	_	_	
ERNIE 4.5 Turbo	0.0%	70.0%	0.0%	100.0%	

DSRs for the Refusal to Answer goal, given single user queries.

Platform	Goal	GPT-40	GPT-40 mini	Gemini*	ERNIE 4.5 Turb
	Refusal to Answer	97.00%	100.00%	87.50%	70.00%
GitHub	Partial Masking	96.00%	81.00%		
	Redirection	93.00%	54.20%	_	_
	Refusal to Answer	98.00%	100.00%		100.00%
Heroku	Partial Masking	100.00%	100.00%	-	100.00%
	Redirection	100.00%	100.00%		100.00%

DSRs for three defense goals, with Iteration-2 defense policy and single user queries.

LLM Type	Defense Method	Real Website	Fictitious Website
GPT-4*	robots.txt	52.4%	0%
	Proposed defense	85%	95.1%
GPT-o*	robots.txt	22.7%	0%
	Proposed defense	82.5%	61.6%

Comparing the DSRs of our Iteration-2 defense with the crawling control method

Comparing Iter-2 and Iter-3 defense policy given multiround user queries.

Effect of policy visibility on DSRs across different LLMs.

Policy position in HTML files Impacts of policy position on defense success.

Challenges:

- Low baseline defense success rate: naive
- more" easily evades standard defenses.