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ABSTRACT

With the advancement of AI-powered personal voice assistants,

speaker authentication via earbuds has become increasingly vital,

serving as a critical interface between users and mobile devices.

However, existing audio-based speaker authentication methods fail

to defend against voice spoofing threats such as replay and deep-

fake attacks. To counteract these risks, we introduce PiezoBud, a

pioneering multi-modal user authentication system that is truly

practical and lightweight for earbuds. PiezoBud uses miniature

piezoelectric sensors to detect micro-vibrations on the skin, extract-

ing user-specific biometric data to authenticate legitimate access

on the local smartphone and protect against malicious attacks. Our

exploratory study, involving 85 participants, demonstrates the ef-

fectiveness of PiezoBud in various everyday scenarios, including

ambient noise, body movement, and in-ear media playing. Using

only 15 seconds of enrollment data, PiezoBud achieves an Equal

Error Rate (EER) of 1.05% and attain a mean authentication latency

of 0.06 seconds on mobile devices. We also evaluate PiezoBud’s ef-

fectiveness in countering challenging adaptive attack scenarios and

its overall performance in various real-world situations. Our evalu-

ation highlights that PiezoBud stands out as a practical, resilient,

responsive, and secure option for earbuds users.

CCS CONCEPTS

• Human-centered computing → Ubiquitous and mobile de-

vices; • Security and privacy → Authentication.
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Figure 1: Attackers can compromise existing VA systems

on smartphones via COTS earbuds like Google PixelBuds

and Apple AirPods through replay/mimic attack. PiezoBud

eliminates such threats by adding a tiny piezo sensor on

earbuds, capturing the skin vibration signals that are hard

to be replayed or mimicked and feasible to establish bio-

matching with audio signals to authenticate legal users.

China. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3666025.

3699358

1 INTRODUCTION

Speaker authentication via earbuds has become increasingly crit-

ical. With a booming market share [10], earbuds now become a

crucial platform for voice assistant (VA) interactions on mobile

devices, offering enhanced privacy protection and portability for

users in their daily lives. Furthermore, the proliferation of AI-based

VAs is encouraging users to manage private matters through these

devices [11, 12]. However, existing audio-based user authentication

solutions [13, 14] fail to defend against prevalent threats such as re-

play attacks [15], side-channel attacks [14], and mimic attacks [16].

By compromising victims’ earbuds, attackers can easily circum-

vent robust authentication methods on mobile devices, thereby

accessing sensitive data stored on them. Although personalized

keyword recognition by training VA with authorized speakers’

sentences [17] is widely used to extract unique voiceprint-based

bio-features to counter potential threats, sole voiceprint-based au-

thentication or liveness detection on earbuds fails to defend against

advanced attacks: As shown at the top of Figure 1, existing earbuds

like PixelBuds [18] fail to defend against replay attacks [19] and

deepfake threats [20]. Others, such as AirPods [21], only detect
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Modalit(ies)
Defense Reliability User-Friendly

# subjects ACC (%) FAR (%) EER (%) Enrollment length (s) Latency (s)

[1] In/out ear sound 23 - 0 < 4 75 0.389 – 0.484

[2, 3] Ear canal 20 – 24 95.16 – 97.38 0.18 – 5.3 - - / 120 -

[4] PPG + Audio 25 94.84 - - - -

[5–7] ACC/IMU 18 – 41 95 – 97 < 7 -/1.28 - 0.3 – 2

[8, 9] Piezo (41 mm 𝜙) + Audio 8 / 29 96 / 97 - / 3.6 - N.A. / 107 - / 4.53

PiezoBud Piezo (10 mm 𝜙) + Audio 85 99.21 0 1.05 15 0.041 – 0.094

Table 1: Comparison with other state-of-the-art authentication methods.

whether the device is worn, ignoring user identity [14]. Thus, at-

tackers can easily compromise the security of mobile devices by

attacking the victim’s earbuds. For example, recent studies like

EchoAttack [14] have demonstrated that attackers can easily de-

ceive existing commercial off-the-shelf (COTS) voiceprint-based

earbuds using a single ultrasound speaker to activate private voice

assistants on smartphones. These insecure systems can result in

significant privacy breaches and economic losses [22–26].

Although earbuds are susceptible to attacks, they offer manufac-

turers the opportunity to incorporate various modalities beyond

voice to enhance security. Designing a practical earbuds system

with reliable multi-modal speaker authentication requires software-

hardware co-design that meets the following criteria:

i)Modality Resilience: Sensors and their auxiliary hardware com-

ponents must be compact enough for integration into COTS ear-

buds, and the cost of the selected sensor should also be minimized.

Therefore, the newly integrated modality must still deliver consis-

tent optimal signal quality with a high signal-to-noise ratio (SNR).

ii) Defense Reliability: Introducing an additional modality should

enhance the security robustness of the earbuds. The new authen-

tication system must perform well in various daily user scenarios

across a large user group and remain immune to advanced attacks,

even if stolen. Additionally, the system should be text-independent,

meaning the earbuds must authenticate every speech they perceive,

not just specific activation keywords (e.g., Hey Siri).

iii) User-Friendly: The authentication system should be user-

friendly, with negligible latency to remain unobtrusive. The en-

rollment should be quick and require minimal processing time. The

authentication process should not negatively impact user experi-

ence and health. Both enrollment and authentication are expected

to be performed locally onmobile devices. Compared to cloud-based

solutions, local processing enhances privacy by keeping sensitive

biometric data on the device. It also reduces latency from device-

to-cloud communication and ensures the authentication system

remains accessible without an Internet connection. Furthermore,

efficient battery life and a comfortable fit should also be optimized.

Nevertheless, existing solutions fail to meet all the aforemen-

tioned requirements simultaneously. As shown in Table 1, firstly,

[1] verifies user identity by comparing in-ear and out-ear sounds.

However, the long data required for enrollment (75 seconds) neg-

atively impacts user experience. Secondly, some methods [2, 3]

enhance security using the unique structure of the human ear, but

playing ultrasound into the ear may risk hearing damage [27] and

requires the speaker to remain inactive, reducing earbud functional-

ity [28]. Moreover, its false accept rate (FAR) can reach to as high as

5.3%, leaving the space to launch a mimic attack. Thirdly, although

combining a Photoplethysmography (PPG) sensor with audio [4]

has also been explored, it fails to provide accurate authentication

(<95% accuracy). Fourthly, some studies have used accelerometer

(ACC)/inertial measurement units (IMU) [5–7], or piezoelectric sen-

sors [8, 9] to capture body vibration or non-audible murmur (NAM)

signals to enhance the security. Nevertheless, the low sampling rate

of IMUs results in information loss (Section 2.2). Thus, users must

speak fixed long sentences to collect sufficient information, hin-

dering efficient text-independent authentication [6] and increasing

latency (up to 2 seconds). Additionally, these piezoelectric-aided

methods offer poor authentication (up to 3.6% FAR), require long

enrollment (up to 107 seconds), and have high latency (up to 4.53

seconds). Furthermore, large piezoelectric sensors with cumber-

some hardware are demanded to boost SNR, which is difficult to

integrate into COTS earbuds [8, 9]. Finally, since the lack of suffi-

cient subjects (<35) for evaluation, whether these methods could

work in a large group of users is still questionable.

In this paper, we propose PiezoBud, a practical piezo-audio ear-

buds solution with a carefully co-designed hardware-software ap-

proach to meet end-to-end requirements, addressing both user ex-

perience and security concerns. As shown at the bottom of Figure 1,

PiezoBud surpasses its predecessors by overcoming all the afore-

mentioned drawbacks. PiezoBud enables user authentication when

paired with a mobile device, such as a smartphone. By leveraging

the newly introduced piezoelectric modality, PiezoBud allows users

to enroll and authenticate themselves on the local smartphones

with an enhanced level of security. PiezoBud excels in real-time,

text-independent, local, and highly secure user authentication, func-

tioning as COTS earbuds without burdening the user experience.

However, several challenges must be addressed for efficient

PiezoBud deployment in complex environments:

i) Embedding Piezoelectric Sensors in Earbuds: Minimal sen-

sors are desirable for integrating into small earbuds. However, their

sizes significantly influence the signal strength (Section 2.3). Thus,

the NAM piezoelectric signal will be much weaker than the voice

audio signal and might be overshadowed by irrelevant noise. It is

challenging to enhance piezoelectric signal strength while keeping

sensor size small.

ii) Integrating Two Different Modalities for Higher Security:

Unlike existing piezo-audio methods [8, 9], PiezoBud enhances

security by leveraging the inherent bio-feature mapping between
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voice audio signals and NAM piezoelectric signals, offering more

user-specific information without the need for additional security

measures. However, effective piezo-audio integration is challenging

as audio data often contains more information than piezoelectric

data. Relying on audio skews the balance, and fusion network [29–

31] or simple concatenation does not enhance security.

iii) Achieving Real-Time Authentication on Mobile Devices

with Limited Resources: To optimize user experience, we need

to shorten the latency of model computation, especially executing

it on mobile devices with a limited energy/computational budget.

This exposes the challenge of requiring a lightweight model while

reserving a high-security level.

To address these challenges, firstly, we design a low-cost hard-

ware platform that seamlessly incorporates a miniature piezoelec-

tric sensor into earbuds, ensuring the user experience and signal

quality remain unaffected with a unique cavity design and amplifi-

cation circuit. Secondly, a novel authentication network consists

of two carefully designed pipelines to project the distributions of

two modalities into a latent space. By doing so, we effectively fuse

features between the modalities in a balanced manner to guarantee

security. Moreover, a signal processing module pre-validates in-

put audio and piezoelectric data, and a compact universal feature

extractor derives high-dimensional features from both modalities.

Together, they reduce training overhead, enabling efficient real-time

performance on resource-constrained devices.

We implement PiezoBud using COTS hardware components.

Table 1 compares PiezoBud with state-of-the-art (SOTA) meth-

ods. PiezoBud demonstrates superior performance in several key

metrics: they provide long battery life (10 continuous hours with

CR2032 coin cell), achieve the highest identification accuracy of

99.21%, maintain the lowest EER (1.05%) with shortest enrollment

time (15 s), ensure 100% defense against spoofing/mimic attacks,

and support real-time (< 94 ms) text-independent authentication on

smartphone locally with low cost (∼$ 30). The main contributions

are summarized below:

• We developed PiezoBud, the first earbud with a miniature

piezoelectric sensor, as an open source 1 and low cost plat-

form for practical speaker authentication. Superior perfor-

mance (1.05% EER with 15 seconds of enrollment data) and

negligible latency (41-94 ms on six tested phones) enable

PiezoBud to offer mobile-friendly, real-time, text indepen-

dent, and local authentication with robust protection against

adaptive attacks.

• We proposed FusionSecNet, a cascaded neural network to

meticulously extract high-dimensional features across dual

modalities. This framework handles two modalities in paral-

lel, skillfully fusing them to produce a robust, personalized

embedding vector. This vector, resistant to various attacks,

enhances the system’s user authentication capabilities.

• We conducted a comprehensive study on human voice and

surface vibration, assembling a dataset for speaker verifi-

cation — the first of its kind to our knowledge. This study

involved 85 participants, from whom we recorded 516 min-

utes of audio using both a microphone and a piezoelectric

sensor.

1https://github.com/HuailiZ/PiezoBud

2 FEASIBILITY STUDY

Our feasibility study validates the proposed concept and potential

of utilizing piezoelectric sensors to secure earbuds.

2.1 Can we use the NAM signal to identify?

Human Phonation Principles The human vocalization system

consists of three key components, each fulfilling a unique but inter-

related function in speech production [32]. Figure 2(a) illustrates

the process starting with lungs that generate necessary airflow. The

airflow vibrates the vocal folds and creates the initial raw sound.

The mouth, tongue, lips, and other articulators refine this sound,

acting as filters to shape the voice and produce a diverse speech

spectrum. Additionally, tissue vibrations generate NAM signals on

the skin [1, 33, 34], which piezoelectric sensors can capture.

Biometric Analysis of Piezoelectric and Audio To verify indi-

vidual biometric traits in NAM signals, we attach a piezoelectric

sensor and a microphone to the same place near the right ear on the

face. We then evaluate the Cross-Power Spectral Densities (CPSD)

between the audio and piezoelectric data using the transfer func-

tion 𝐻 (𝑓 ) = 𝑃𝑝 (𝑓 )/𝑃𝑎 (𝑓 ), where 𝑃𝑝 (𝑓 ) and 𝑃𝑎 (𝑓 ) represent the
power spectral densities of the piezoelectric and audio data, respec-

tively. These densities are calculated using Welch’s method [35].

Results for three subjects are displayed using Principal Component

Analysis [36] (PCA), with the first two components in Figure 2(b).

The clustering of points indicates a consistent relationship between

piezoelectric and audio data within each subject and variations

among different ones.

2.2 Why choose piezoelectric over IMU?

Existing studies primarily utilized IMU sensors as the additional

or sole modality for voiceprint-based user authentication, as these

sensors are already integrated into some earbuds [5, 6, 37]. This

raises a critical question: why choose piezoelectric sensors over IMU

sensors? To address this, we conducted an experiment comparing

the performance of both sensor types. Three participants read an

article for one minute, with a piezoelectric sensor [38] placed in

front of each subject’s ear and an IMU sensor [39] attached next

to it. Both sensors recorded the NAM signals while participants

spoke. The piezoelectric sensor was sampled at 10 kHz, 100 times

higher than typical IMU sensors [40]. The NAM signals captured by

the piezoelectric sensor were converted into a Short-Time Fourier

Transform (STFT) spectrum after applying a 100 Hz high-pass filter

(HPF). As shown in Figure 2(c), the piezoelectric sensor captures

information up to 5 kHz, while the IMU sensor loses high-frequency

components. Besides, as shown in Figure 2(d), IMU data drift also

introduces errors. Although methods [41] exist to mitigate this

issue, they can’t recover the information in high frequencies.

2.3 What is the impact of sensor size?

To assess if the piezoelectric sensor size affects PiezoBud’s perfor-

mance, we compared different sensor sizes in an experiment. We

used three piezoelectric sensors differing only in dimensions: 20 ×

10 mm [38], 30 × 15 mm [42], and 30 × 30 mm [43]. Each sensor

was placed on a speaker, emitting a 1000 Hz tone at a consistent

volume. We recorded ten seconds of piezoelectric signals for each
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(a) The principles of human phonation. (b) Users’ transfer function depicted using
first two components of PCA.

(c) The highest frequency of piezoelectric
data can reach 5 kHz.

(d) IMU sensor captured NAM signal suffers
from drift errors.

Figure 2: Feasibility Study.

trial, repeating ten times. The average signal strengths were 60.24

dB, 71.5 dB, and 79.67 dB, respectively. These findings show that

piezoelectric sensor signal strength increases with size. Hence, the

raw signal must be enhanced to integrate miniature sensors into

earbuds without compromising signal quality.

3 THREAT MODEL

Beyond the ability to authenticate different users, PiezoBud should

be resilient to various attacks. We outline the attacker capabili-

ties and threat model for PiezoBud. The adversary aims to trick

the authentication system into accessing sensitive services on mo-

bile devices. We assume that attackers might gain possession of

PiezoBud, but not the user’s authentic piezoelectric data. Because

this would require the attacker to physically attach sensors to the

user’s facial area, which is highly improbable. This paper examines

four attack scenarios: targeting audio data alone (Scenario 1) and

compromising both audio and piezoelectric modalities (Scenarios 2,

3, and 4).

Scenario 1. Attackers only launch audio replay/mimic at-

tacks. In this scenario, we assume the attackers lack access to the

user device and are unaware of the piezoelectric modality, targeting

audio-only, replay attacks [14, 19]. Under this assumption, we con-

sider two cases: i) Replay: the attackers use previously recorded

audio of the victim, and ii) Mimic: the attackers synthesize the

victim’s voice using advanced voice generation technologies [44–

46]. The victim is either silent or talking during the attacks. If the

victim is silent, we assume the piezoelectric sensor can only pick

up random noise. If the victim is talking, the attackers may use a

loudspeaker to overwhelm the victim’s audio following the criteria

in [14] with an ultrasound speaker, ensuring that victims will not

notice them.

Scenario 2. Attackers falsify piezoelectric data to mimic vic-

tims’. In this scenario, we assume attackers obtain the victim’s

PiezoBud. Aware of the piezoelectric protection, they attempt to

mimic the victim’s signals. Attackers might attempt several meth-

ods to deceive PiezoBud: i) generating voltage glitches to mimic the

piezoelectric data, and ii) wearing PiezoBud themselves to use their

own piezoelectric data in an effort to imitate the victim. In such

cases, the audio modality is the victim’s, while the attackers could

use their own piezoelectric signals or introduce unrelated voltage

changes to deceive PiezoBud.

Scenario 3. Attackers use recorded audio data as input via

different media. Understanding that both modalities originate

from the same source, attackers may attempt to deceive the system

with a synthetic human skull model. Attackers could attempt to

place a speaker near the throat area of a skull model while position-

ing PiezoBud on the ear side of the model, trying to replicate the

piezoelectric data through the speaker and skull model. This fools

the system into identifying this setup as the legitimate user.

Scenario 4. Attackers train a voice conversion network to

obtain synthetic NAM signals from compromised audio. In

a less likely scenario, attackers could develop a voice conversion

network [47] to convert audio modality into piezoelectric modality,

attempting to uncover the unique bio-information tied to a user

in both audio and piezoelectric data. However, given the limited

availability of piezoelectric data and the substantial computational

demands of such a network, it is presumed that attackers would

only have access to a constrained dataset, and the network would

face significant limitations in complexity and size.

4 SYSTEM OVERVIEW

As shown in Figure 3, PiezoBud consists of two primary compo-

nents: a custom-designed hardware platform and an authentication

framework FusionSecNet.

PiezoBud Hardware: We design a custom hardware prototype

consisting of a pair of two printed circuit boards (PCBs) and a

shell that combines a small piezoelectric sensor with the sensing

boards. The cavity, designed to house the piezoelectric sensor, im-

proves the quality of collected piezoelectric data. Furthermore, a

specially designed amplification circuit significantly enhances the

raw piezoelectric signal.

FusionSecNet Modeling: FusionSecNet is optimized for effi-

cient use on mobile devices such as smartphones. It includes a

feature extractor SynthEx and an authentication model flowAuth.

After pre-validation, PiezoBud employs the compact universal Syn-

thEx to extract high-dimensional features using cascaded scaling

Res2Blocks [48]. These features capture user-specific information

from each modality across multiple scales. Those features from

both modalities are then processed by flowAuth, a blockwise-paired

network that maps each user’s distribution into a latent space com-

bining both modalities. The final output of flowAuth is individual-

distinctive and attack-resistant, giving subsequent authentication.

Overall Progress: To authenticate a new user, PiezoBud collects

enrollment data from both audio and piezoelectric sensors. This

data is processed locally by FusionSecNet to generate user-specific
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Figure 3: PiezoBud Overview: The system involves three main procedures: signal pre-validation, feature extraction, and

authentication. SynthEx derives high-level features, and flowAuth combine twomodalities for authentication. PiezoBud further

computes the cosine similarity between the embedding vectors of the input data and the enrolled data. If the similarity exceeds

the threshold, PiezoBud accepts the input; otherwise, it is rejected.

embedding vectors on the device. During regular use, PiezoBud

continuously captures audio and piezoelectric data while the user

is speaking, feeding it into FusionSecNet to produce verification

embedding vectors. Authentication proceeds with PiezoBud per-

forming binary classification based on the cosine similarity between

these embedding vectors. The process concludes with a binary out-

put, where a label of True signifies successful user authentication.

5 PIEZOBUD HARDWARE DESIGN

As shown in Figure 4, our hardware setup features a pulse-density

modulated (PDM)microphone, a miniature piezoelectric sensor, and

a Bluetooth Low-Energy (BLE) chip for the microcontroller (MCU).

It is powered by a coin cell battery or MicroUSB connector, with

programming via Serial Wire Debug (SWD). As the piezoelectric

sensor’s SNR declines with its size decreasing, we aim to develop

a dedicated amplification circuit to improve signal quality before

processing. The right side of Figure 4 highlights key components: a

differential amplification module to amplify raw piezoelectric data,

an impedance matching module to reduce signal reflection, a high-

pass filter to eliminate baseline voltage, and a second amplification

module for further enhancement. The MCU captures the enhanced

data via the differential successive approximation register (SAR)

analog-to-digital converter (SAADC) channel. After capturing both

audio and piezoelectric data, they are transmitted to the end device

via Bluetooth.

Additionally, we create a shell to enhance the quality of data

collected by the piezoelectric sensor. The housing structure is opti-

mized for better SNR of piezoelectric data. As shown in Figure 5(b),

the sensor is centrally positioned with distinct materials layered

above and below it. The material above reflects most ambient noises,

while the material below conducts most NAM signals. We assessed

the sensor’s performance with various materials placed above and

below it. For each material combination, we conducted two exper-

iments: i) placing the material between the sensor and the skin

(inwards) to assess NAM signal conduction, and ii) positioning it

above the sensor (outwards) to evaluate ambient noise reflection.

In the inwards test, higher amplitudes indicate better signal con-

duction, while in the outwards test, lower amplitudes signify better

noise reflection.

Figure 4: Hardware block diagram: PiezoBud includes a PDM

microphone, a piezoelectric sensor with a custom amplifier,

a coin cell battery, and a MicroUSB port.

For the inward tests, a volunteer consistently pronounces the

vowel o. For the outward tests, another volunteer stands in front

of the sensor and repeats the same sound at the same volume. Fig-

ure 5(a) shows the average amplitude ratios from each experiment,

compared to the baseline where the piezoelectric sensor is attached

directly to the skin without any material. We found that silicone

significantly amplifies the inward sounds (target signal) due to

its effective transmission of NAM signals, while epoxy suppresses

most ambient noise. Based on these findings, we engineered the

cavity to fit the piezoelectric sensor, as shown in Figure 5(b). The

sensor is positioned between silicone rubber (below) and epoxy

resin (above). The significant density differences between the epoxy

resin and air reduce the ambient noise picked by the piezoelectric

sensor. This cavity design enhances PiezoBud’s defense against

spoofing/mimic attacks and improves the quality of the collected

data.

Figure 6 illustrates the daily use of PiezoBud and its size com-

pared to a quarter. The compact design ensures a comfortable fit

and user experience while maintaining piezoelectric data quality.

6 MULTI-MODAL FUSIONSECNET DESIGN

6.1 Pre-Validation Data Processing

Feeding raw collected data directly into the next procedure is im-

practical due to high computational and power demands. To con-

serve battery and improve signal quality, we perform pre-validation
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(a) Materials affect the piezoelectric sensor’s
performance.

(b) We place epoxy on the top of sen-
sor and silicon below it.

Figure 5: The cavity layered with various materials helps

reduce outside noise and enhance signal quality.

Figure 6: PiezoBud integrates a piezoelectric sensor into ear-

buds without compromising user comfort.

to prevent simple attacks, like audio replay. Specifically, we seg-

ment active speech audio clips and verify their alignment with

corresponding piezoelectric data clips.

We use the Voice Activity Detection (VAD) algorithm from We-

bRTC [49] to isolate valid human speech clips, allowing PiezoBud

to activate only in response to detected speech. First, we apply a

HPF to remove low-frequency components related to facial muscle

movements and human activities [5]. We then reduce steady-state

noise (e.g., hiss or hum) using spectral gating [50]. Next, we de-

rive the envelope of the piezoelectric data by applying the Hilbert

transform [51]. Finally, we determine the range of the normalized

envelope. If the envelope range for the piezoelectric data falls be-

low an empirically configured threshold, it indicates an absence

of voice activity, meaning piezoelectric input is considered to be

either silent or inactive in terms of vocalization. The pre-validation

scheme assesses the alignment between the audio and piezoelec-

tric modalities, ensuring that PiezoBud proceeds only when both

inputs are validated. Additionally, it enhances the quality of the val-

idated piezoelectric data. Detailed parameter settings are provided

in Section 7.2.

6.2 Feature Extractor SynthEx Modeling

After processing the raw signals, we aim to extract high-dimensional

features from both modalities instead of simply using the raw data.

The reason is that using the data directly, which contains surplus

Figure 7: SynthEx Overview: It contains three main blocks,

each with 2 Res2Blocks and 1 SE block. Outputs are concate-

nated and processed through MFA and ASP, followed by an

FC and BN layer. In the Res2Block with scale 𝑠, the input

data 𝑥 is divided into 𝑠 equal-length segments. During the

forwarding, the segments are residually added. Then, all the

segments are concatenated to generate the final output 𝑦.

information, would increase model parameters, complicate train-

ing, and risk system overload. We developed SynthEx as a uni-

versal compact feature extractor for both modalities, producing

high-dimensional, concise features that retain modality-specific

information. The high sampling rate of the piezoelectric sensor

enables using the same model structure for both piezoelectric data

and audio.

As shown in Figure 7, SynthEx contains three sequential main

blocks. Each consists of two Res2Blocks [52] and one SE block [53].

These Res2Blocks and SE blocks enable the model to process fea-

tures at different scales, enhancing the representativeness of the

extracted features and improving model efficiency. We apply a

different scale 𝑠 for each main block, where 𝑠 refers to dividing

the input feature map into 𝑠 subbands along the channel dimen-

sion. Larger scales divide the feature map into smaller channel

bands, allowing the block to focus on more detailed features. Con-

versely, smaller scales direct the main block to concentrate on more

general features across the channels and reduce the number of

training parameters [54]. However, reducing training parameters

can lead to potential performance degradation. To address this, we

added an extra Res2Block to each main block, forming a double

Res2Blocks chain. This structure preserves the original spectrum

and helps counteract performance decline. The outputs from differ-

ent main blocks are combined residually, and features are extracted

using multiple-layer feature aggregation (MFA) and attentive statis-

tic pooling (ASP) [52], followed by a fully connected (FC) layer

and a batch normalization (BN) layer. By incorporating cascaded

Res2Blocks, SynthEx effectively extracts user-specific information
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across multiple scales, from small to large. This unique structure

comprehensively distills vital features, countering performance

degradation without significantly increasing the number of param-

eters, thus maintaining simplicity.

6.3 Multi-Modality Authentication flowAuth
Modeling

We aim to integrate distinct features from audio and piezoelectric

modalities for user authentication, surpassing simple concatena-

tion, as mere concatenation cannot defend against complex attacks.

Drawing on the insight that the characteristics of audio and piezo-

electric data each follow unique distribution patterns, we observe

that different modalities like audio and piezoelectric inherently

exhibit distinct features within their respective distributions. As

stated in Section 2.1, our findings indicate that the relationship

between audio and piezoelectric modalities remains consistent for

the same individual. Thus, we realize the object function as follows:

𝑧 = 𝑔𝜃 (𝑝 |𝑎) (1)

In this context, 𝑔𝜃 (·) is the function defined by the model, and 𝑧
symbolizes the distribution of piezoelectric data 𝑝 conditioned on

audio 𝑎 within a specific latent space. Ideally, 𝑧 should be able to

integrate the biometric information of those two different modal-

ities. Based on this, we developed flowAuth to meet our unique

requirements. The structure of flowAuth is depicted in Figure 8. It

accepts embedding vectors of audio and piezoelectric data as 𝐸𝑎 and
𝐸𝑝 , then produces a user-specific embedding vector, denoted as 𝐸𝑧 .
As shown in the left bottom part of Figure 8, the block contains two

flows [55], and each flow contains three layers: actnorm, invertible

1×1 conv, and affine coupling layers. Each non-final block splits its

output: one half progresses as the hidden output to the subsequent

block, and the other half as the block’s open output. flowAuth’s

unique block pairwise alignment design balances the information-

rich audio data with the less information-rich piezoelectric data,

effectively preventing a potential skew towards the audio data.

Additionally, by assigning different modalities to separate input

pipelines, flowAuth projects the distribution of hidden user-specific

biometric features into a latent space. The process is outlined as

follows: i) Each modality is processed using a separate pipeline.

These two pipelines have the same number of blocks and flows but

operate with distinct parameters. We refer to them as 𝑃𝐴 and 𝑃𝑃
for the pipelines of audio and piezoelectric modalities, respectively.

ii) During the training progress, we apply block-to-block alignment

between 𝑃𝐴 and 𝑃𝑃 , and the output of blocks at the same levels in

these pipelines can be articulated as follows:[
𝑜𝑖+1𝑎 , ℎ𝑖+1𝑎

]
= 𝐵𝑖+1𝑎

(
ℎ𝑖𝑎

)
[
𝑜𝑖+1𝑝 , ℎ𝑖+1𝑝

]
= 𝐵𝑖+1𝑝

(
ℎ𝑖𝑝 , 𝑜

𝑖
𝑎

) (2)

where 𝑎 and 𝑝 represent the audio and piezoelectric modalities

respectively, and 𝑖 denotes the level of block. In this notation, 𝑜
and ℎ correspond to the open and hidden outputs of the block. The

hidden and open outputs work together to enable efficient and ac-

curate modeling of complex multi-modal data through distribution

projection. Hidden outputs capture essential features, while open

outputs ensure the results are expressive and observable. The hid-

den output of 𝑖-th block in 𝑃𝐴 is fed into the block 𝐵𝑖+1𝑎 , its open

Figure 8: flowAuth Overview: it take embedding vectors 𝐸𝑝
(piezoelectric) as input and 𝐸𝑎 (audio) as condition. Each

block (mid bottom) contains 𝑘 flows. Each flow (right bottom)

contains three essential layers.

output 𝑜𝑖𝑎 is concatenated together with hidden output ℎ𝑖𝑝 of 𝑖-th
block in 𝑃𝑃 . Then, the concatenated output is fed into the block

𝐵𝑖+1𝑝 . Finally, the open outputs of each block in 𝑃𝑃 are reshaped and

concatenated as the final output of 𝐸𝑧 . In our design, the flowAuth

model consists of three blocks, each containing two flows. These

settings were chosen to achieve optimal results with the smallest

possible configuration.

6.4 Loss Function

FusionSecNet is expected to extract user-specific features and fuse

multi-modal features with enhanced security. It is important to

note that while PiezoBud is designed for authentication, multiple

users are selected in each training batch. The model’s objective is to

maximize the distance between different users’ embedding vectors

while minimizing the distance within the same user’s embedding

vectors [52, 54, 56]. The detailed designs for the loss functions

guiding the SynthEx and flowAuth are outlined below.

Feature Extractor SynthEx is designed to extract user-specific

high-level features. It ensures that features extracted from a single

modality of one user exhibit high similarity. To achieve this, we

use Generalized End-to-End (GE2E) loss, which streamlines and

enhances the training process for speaker verification systems [56].

GE2E loss is defined as:

LGE2E =
1

𝑆 ×𝑈

𝑆∑
𝑗=1

𝑈∑
𝑖=1

[
−S𝑗𝑖, 𝑗 + log

𝑆∑
𝑘=1

exp(S𝑗𝑖,𝑘 )

]
(3)

where 𝑆 is the number of speakers, 𝑈 is the number of utterances

for each speaker. S𝑗𝑖,𝑘 is the similarity between 𝑖-th utterance of

speaker 𝑗 and centroid of speaker 𝑘 :

S𝑗𝑖,𝑘 =

{
𝑤 · cos(e𝑗𝑖 , c

−𝑖
𝑗 ) + 𝑏 if 𝑘 = 𝑗

𝑤 · cos(e𝑗𝑖 , c𝑘 ) + 𝑏 otherwise
(4)
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c
−𝑖
𝑗 is speaker 𝑗 ’s centroid excluding utterance 𝑖 and c𝑘 is speaker

𝑘’s centroid.𝑤 and 𝑏 are learnable parameters that scale and shift

the similarity scores, respectively. By minimizing this loss, SynthEx

learns to generate embedding vectors close to the same speaker

and distant for different speakers. For the training of SynthEx, we

apply the GE2E loss to two different modalities separately:

LSynthEx = LGE2E (𝐸𝑎) + LGE2E (𝐸𝑝 ) (5)

Authentication Model The goal for flowAuth is to construct

the integrated embedding vector 𝐸𝑣𝑧 using the embedding vector of

piezoelectric data 𝐸𝑣𝑎 as the condition and the embedding vector of

audio 𝐸𝑣𝑝 as the input. To defend against various attack scenarios, we

incorporated falsified inputs during training, including i) treating

invalid piezoelectric modality input as white Gaussian noise (WGN),

ii) using audio data for both audio and piezoelectric modalities, and

iii) introducing a temporal mismatch between piezoelectric and

audio data. These inputs are then concatenated with genuine 𝐸𝑧 at

the user dimension to compute the GE2E loss:

LflowAuth = LGE2E

( [
𝐸
(𝑎,𝑝 )
𝑧 , 𝐸

(𝑎,𝑤𝑔𝑛)
𝑧 , 𝐸

(𝑎,𝑎)
𝑧 , 𝐸

mis(𝑎,𝑝 )
𝑧

] )
(6)

where𝑤𝑔𝑛 denotes WGN, 𝑎 is the audio data, and 𝑝 indicates the

piezoelectric data. 𝐸
(𝑎,𝑝 )
𝑧 represents the authentic embedding when

audio and piezoelectric data are aligned, and 𝐸
mis(𝑎,𝑝 )
𝑧 corresponds

to the scenario where 𝑎 and 𝑝 are mismatched. This concatenation

enhances flowAuth’s robustness against multiple malicious attacks,

enabling it to effectively distinguish legitimate input features from

malicious ones. The overall objective function is as follows:

L = 𝛼 · LSynthEx + 𝛽 · LflowAuth (7)

where 𝛼 and 𝛽 are pre-defined hyper parameters to change to focus

of FusionSecNet on different part.

7 IMPLEMENTATION

7.1 Hardware Prototype

The PiezoBud prototype consists of three components: an audio

sampling module, a piezoelectric sampling module, and an earbud

shell. We use a miniature piezoelectric sensor (PUI AB107B-LW100-

R [57]), which interfaces with an amplification PCB board including

LM358P [58] andMAX4466 [59] amplifiers2. This amplification PCB

connects to the main PCB, which integrates a PDM microphone

(MP23DB01HPTR) [60] and a BLE microcontroller (nRF52840) [61].

The amplification circuit was moved to a separate PCB to fit the

earbuds. Figure 9 shows a size comparison between our custom-

designed PCBs, the piezoelectric sensor, and a quarter coin. The

left circular PCB (28 × 28 mm) is the main component, while the

right rectangular PCB (15 × 20 mm) is the amplification circuit. The

MAX4466-based module’s amplification circuit has a trimmer pot

to adjust the gain from 25× to 125× for research. The differential

amplification module’s gain is set to 200×, and the MAX4466-based

module maintains a fixed 25× gain throughout the experiment.

We developed PiezoBud’s hardware schematic and layout using

2An impedance mismatch exists between the amplifier and the piezoelectric sensor.
Our prototype serves as preliminary validation, using a common COTS amplifier with
acceptable signal strength in tests. For better performance, an impedance-matched
amplifier is preferred.

Figure 9: PiezoBud PCBs with miniature piezoelectric sensor

when placed beside a quarter coin.

EasyEDA [62–64] and fabricated two 2-layer PCB boards through

JLCPCB. The 3D-printed enclosures were designed with AutoDesk

Fusion 360 and produced on a Creality Resin 3D Printer Halot-

Mage. Table 2 provides the prototype’s cost breakdown. PiezoBud

serves as an initial prototype for performance assessment, with

future versions potentially using cheaper components for large-

scale production.

7.2 Software Implementation

We implement FusionSecNet using PyTorch with a learning rate

of 1e-3 and a scheduler that decays at 0.97 every 100 epochs. We

optimize using Adam with a weight decay of 2e-5. To enhance

FusionSecNet’s defensive capabilities, we set 𝛼 to 0.3 and 𝛽 to 0.7.

We ensure thorough learning and convergence by training for 2,000

epochs.

Pre-Validation Signal Processing The cut-off frequency of the

HPF is set to 100 Hz, and a threshold of 0.45 is determined through

empirical analysis. For spectral gating noise reduction, we set the

noise reduction ratio to 0.97. We configure the detection level to 2

and use a 30 ms frame length for VAD.

Feature Extraction Model To enhance SynthEx’s verification

performance, we pre-train it using Voxceleb1 [65], which features

1,211 speakers for training and 40 for testing. The pre-training

process includes 153,000 utterances processedwith a 25msHanning

window and a hop length of 10 ms. Two-second segments are

extracted from each utterance. During this process, we utilize AAM-

SoftMax loss [66] with a loss margin of 0.2 and a loss scale of 30.

Authentication Model To train flowAuth, we collect a dataset

from 85 individuals (Section 8.1). For each subject, we allocate

80% of their utterances for training and reserve the remaining 20%

for testing. This widely adopted strategy ensures ample training

data while keeping the test data unseen during training [67]. Each

training epoch consists of batches containing 20 subjects. For each

subject, ten utterances (each lasting 500 ms) are selected to produce

an 80-band Mel Spectrum using the same Hann window and hop

length settings as in SynthEx.

8 SYSTEM EVALUATION

8.1 Experimental Setup

Participants To evaluate the FusionSecNet authentication model

in Section 6, we recruited 85 subjects 3 (21 females, 64 males) aged

3The study received Institutional Review Board (IRB) approval from our institute.
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(a) EER of PiezoBud on training dataset. (b) EER v.s. Enroll time. (c) EER v.s. #Users. (d) EER v.s. User Diversity.

Figure 10: PiezoBud Performance over different enroll time and #users.

Components and Manufacturing Price ($) Total ($)

Components

Piezoelectric Sensor 0.34

9.17
PDM Microphone 0.78

BLE Chip 0.67

Others 7.38

PCB and

SMT Service

Main component 17.47
20.65

Amplification Circuit 3.18

Table 2: Detailed price of PiezoBud prototype.

18 to over 40, including 45 native English speakers, all experienced

with voiceprint-based applications. After training the authentica-

tion model with data from 85 subjects, we recruited 10 additional

volunteers (8 males and 2 females) to evaluate the performance

of PiezoBud under various impact factors and to validate system

robustness against malicious attackers, as discussed in Section 3.

Data Collection During the experiment, participants were in-

structed to wear PiezoBud comfortably and read an article at a

natural speed and volume. The PDM microphone was sampled at

16 kHz, and piezoelectric data was sampled at 8 kHz to reduce

power consumption. All signals were recorded synchronously and

transmitted to a MacBook Pro 2021. In the study, we gathered a

unique dataset of 516 minutes, plus 10 more minutes data of 10

additional users (Section 8.3 and Section 8.4). All data were stored

and trained locally.

Reading Materials To ensure PiezoBud is text-independent, we

used three types of reading materials: a speech script, a fairy tale,

and scientific content. Each participant was randomly given one

to introduce content diversity and mitigate bias. Each material is

about 1000 words long to ensure consistent reading duration.

Enrollment and Verification During the enrollment phase, em-

bedding vectors of the piezoelectric (𝐸𝑒𝑝 ) and audio (𝐸𝑒𝑎) signals are
fed into the flowAuth model, producing the output 𝐸𝑒𝑧 . Centroids
for both modalities and the output are determined by averaging

their respective embedding vectors as 𝐶𝑒
𝑎 , 𝐶

𝑒
𝑝 , and 𝐶

𝑒
𝑧 . For verifi-

cation, the embedding vectors 𝐸𝑣𝑝 and 𝐸𝑣𝑎 are used as inputs and

conditions to generate 𝐸𝑣𝑧 . Subsequently, we compute the average

cosine similarity between the embedding vectors and centroids of

each modality:

𝑆𝑐 =
1

3

∑
𝑖

𝑆𝑖𝑐 (𝐸
𝑣
𝑖 ,𝐶

𝑒
𝑖 ) =

1

3

∑
𝑖

𝐸𝑣𝑖 ·𝐶𝑒
𝑖

‖𝐸𝑣𝑖 ‖‖𝐶
𝑒
𝑖 ‖

𝑖 ∈ {𝑎, 𝑝, 𝑧} (8)

Next, we assess whether the cosine similarity value exceeds a thresh-

old𝑇 generated from training data to determine if the current input

is authentic. Authentication is granted only when the cosine simi-

larity values surpass the threshold.

Evaluation Metrics We utilize the Equal Error Rate (EER) as

our principal evaluation metric [68], which identifies the point at

which the False Reject Rate (FRR) and the False Accept Rate (FAR)

are equal across different thresholds. Generally, FAR and FRR are

defined as follows:

FAR =
FP

FP + TN
, FRR =

FN

FN + TP
(9)

where TP, FN, FP, and TN denote true positive, false negative, false

positive, and true negative, respectively. Figure 10(a) illustrates the

variation of FAR and FRR on the training set. When the threshold𝑇
rises, the FRR rises while the FAR decreases. Our goal is to minimize

EER to prevent both unexpected FN and FP simultaneously. The

EER reaches its minimum value of 0.61% when the threshold is set

at 0.56.

8.2 FusionSecNet Authentication Performance

Overall Performance We assess the overall performance using

15 seconds of enrollment data for each of the 85 users. PiezoBud

achieves optimal performance, reaching the lowest EER of 1.05%

with the threshold-obtained over training set. Besides, PiezoBud

realizes 99.21% accuracy on speaker classification [65]. Compared

to SOTA baselines in Table 1, PiezoBud boosts accuracy by 1.83%

to 11.71%. Furthermore, PiezoBud demonstrates an 18% to 73.8%

lower EER and require 5× to 8× shorter enrollment time.

Impact of Enrollment Data Lengths We investigate the in-

fluence of enrollment data lengths (from 5 to 25 s) on PiezoBud’s

performance. Figure 10(b) shows consistent EER values across the

range from 1.15% to 1.06%. This analysis is vital, as the short enroll-

ment time ensures user experience and system practicality.

Impact of User Number We analyze PiezoBud’s performance rel-

ative to the number of users. This evaluation will assess the model’s

scalability, ensuring it maintains stable accuracy as the user base

grows. Since a well-designed authentication system should deliver

consistent performance regardless of user base size, we adhere to

the same evaluation principles described in [1]. For each user, we

obtain the enrollment embedding by randomly selecting 15 seconds

of data from the testing set and inputting it into FusionSecNet. We

tested PiezoBud with groups ranging from 10 to 80 subjects. The
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results, shown in Figure 10(c), demonstrate that the EER rises as

the number of users increases from 10 to 40 (0.35% to 0.99%) but

remains consistent as the number of users increases from 40 to 80

(0.99% to 1.09%). With an overall EER of 1.05% at 85 users, these

findings indicate PiezoBud’s adaptability to varying user profiles

and its potential scalability to accommodate a larger user base.

Impact of User Diversity: We evaluate PiezoBud across diverse

users, considering gender and English proficiency. Figure 10(d)

shows an EER of 1.02% for females, 1.04% for males, 1.09% for

native English speakers, and 1.00% for non-native speakers. These

results highlight the consistent performance of PiezoBud regardless

of gender or native language.

8.3 PiezoBud in Practical Scenarios

After training the authentication model with the 85-user dataset,

we evaluate the robustness of PiezoBud against factors such as

background noise, body movement, audio playback, and device re-

wearing. The additional ten volunteers (eight males, two females),

who are not part of the original 85 subjects, participate in this eval-

uation. We collect 30 seconds of data from each of the 10 volunteers.

This non-overlapping setup ensures that the evaluation scenarios

closely resemble real-world conditions.

Resistance to Ambient Noises In this experiment, we evaluate

the performance of PiezoBud with five different ambient noise

types: a) an office with white noise (40 dB), b) a meeting room with

conversational noise (45 dB), c) a café with background chatter (55

dB), d) a bustling restaurant (80 dB), and e) an active construction

site (85 dB). To ensure consistent noise levels, we play each type of

noise at fixed volumes matching the previously mentioned dB levels

using a MacBook Pro 2021. The noise simulation setup is shown

on the left side of Figure 11(a). The results, depicted in Figure 11(b),

show PiezoBud’s superior performance, with lower EERs ranging

from 1.05% to 3.84% across different noise environments, compared

to 3.06% to 5.05% with only audio signals. This improvement is due

to the piezoelectric modality capturing stable surface vibrations

from the body, unaffected by environmental noise. The epoxy also

further shields the piezoelectric sensor from external interference.

Reliability on Body Gestures We also conduct an experiment

focusing on daily gestures that could disrupt the system, including a)

walking, b) turning around, c) typing, and d) clapping. Participants

perform these gestures, as shown on the right side of Figure 11(a),

while speaking naturally. We collect a 30-second data sample for

each gesture from each participant. The results are displayed in

Figure 11(c). PiezoBud exhibits superior performance, with EERs

ranging from 1.05% to 2.41% across diverse body movements. This is

an improvement over EERs of 3.80% to 6.95% when solely utilizing

the piezoelectric modality. This enhancement can be attributed

to the stability of the audio signal, which remains unaffected by

human body movement.

Solidness on Body Gestures with Noises We expand our evalu-

ation of PiezoBud to include complex conditions, testing its perfor-

mance with user motion and ambient noise. Experiments simulate

common activities in various scenarios: a) typing in an office, b)

typing in a cafe, c) walking on a construction site, and d) clapping in

a meeting room. Noise levels match those previously described. As

illustrated in Figure 11(d), PiezoBud shows superior performance,

with EERs from 2.58% to 3.85%. In comparison, using only audio

yields EERs between 4.60% and 5.30%, and using only the piezo-

electric modality results in EERs from 4.90% to 7.35%. These results

highlight PiezoBud’s stability and effectiveness in challenging real-

world conditions.

Resilience on Media Playing In addressing a common daily

scenario, we investigate the performance of PiezoBud during media

playback on earbuds. Existing works demand that these devices

can’t produce additional sounds or music during voice-based au-

thentication processes [1–3], significantly restricting user experi-

ence. To assess PiezoBud’s performance in realistic settings, partic-

ipants spoke at their normal volume while media played through

the earbuds, including TV shows, music, and movies. The results

in Figure 12(a) show that PiezoBud’s EER increases from 1.05% to

1.15%. The unaffected performance suggests PiezoBud’s efficiency.

Robustness on Position Changes We assess PiezoBud’s re-

silience to the practice of putting on and taking off earbuds, which

may induce slight variations in sensor placement. Participants read

the material, re-wore the device, and repeated this process three

times. The results shown in Figure 12(b) reveal that the perfor-

mance of PiezoBud remains consistent after re-wearing, with a

minor change of 0.02%. PiezoBud’s EER remain stable across both

scenarios, indicating minimal impact from user positional shifts.

8.4 PiezoBud in Attack Scenarios

Following the protocol outlined in Section 8.3, we continue using

the 10 volunteers who are not part of the original 85 participants.We

ensure that PiezoBud has no prior interaction with these volunteers

before the experiment. We collect 30 seconds of data from each of

the 10 volunteers, including voice assistant commands and everyday

conversations. Each participant’s characteristics are represented

by a unique centroid. We then assess PiezoBud’s ability to counter

the attack scenarios described in Section 3, evaluating the security

effectiveness of the PiezoBud software-hardware co-design. The

defense success rates are presented in Table 3.

Scenario 1. Attackers only launch audio replay/mimic at-

tacks. In this scenario, attackers use only audio replay attacks

without engaging the piezoelectric sensor. We record volunteers’

voices using an iPhone 14 Pro Max and process them with voice

cloning technologies (e.g., [44–46]) for mimic attacks. The deceptive

audio is then played through a MacBook Pro 2021 while volunteers

wear PiezoBud. When the victim is silent, the played audio is input

into PiezoBud as the audio component, while the piezoelectric in-

put is invalid due to no NAM signal. When the victim speaks, we

employed an ultrasound speaker [69] to replay the audio, superim-

posing it over the victim’s voice imperceptibly, and the piezoelectric

modality remains the victim’s own. The pre-validation step rejects

all attacks due to the audio and piezoelectric data mismatch. We

conducted 100 attacks for each combination, and none breached

PiezoBud. These results demonstrate PiezoBud’s effectiveness in

defeating replay/mimic attacks by integrating piezoelectric data.

Scenario 2. Attackers falsify piezoelectric data to mimic vic-

tims’. We also consider a scenario where attackers gain direct
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(a) Participants wear PiezoBud in different
noise environments and motions.
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(d) EER against motion combined with noise.
‘S&Q’ indicates still and quiet.

Figure 11: PiezoBud performance over different noise types and body gestures comparedwith utilizing only audio or piezoelectric

modality, respectively. The results show that PiezoBud has a more stable performance over different interference than the

single modality.
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(a) EER against different medias played.
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(b) EER against position changes.

Figure 12: PiezoBud shows effective performance during

media playback and maintain stable performance after re-

wearing, even with minor position changes.

Attack Scenarios
Defense

Success Rate

Scenario 1

Replay Only 100%

Mimic

ResmbleAI [44]

100%PlayHT [46]

Vall-E [45]

Scenario 2: Replay + Attacker’s Piezo

100%Scenario 3: Replay + Skull Generated Piezo

Scenario 4: Replay + Generative AI Piezo

Table 3: PiezoBud defends all the attack scenarios.

access to the victim’s device. We examine the possibility of attack-

ers using unrelated data with the victim’s recorded audio to deceive

PiezoBud. In this scenario, attackers steal the victim’s PiezoBud.

They may attempt to activate the piezoelectric input by directly

tapping the sensor, or wear the device and mimic the victim’s

speech patterns to replicate their unique piezoelectric data. The

recorded audio is played at a high volume to drown out the at-

tacker’s voice, making the audio input closely resemble the victim’s.

100 attacks were conducted for each possible attack combination.

Despite these efforts, PiezoBud successfully rejected all 200 attack

attempts. PiezoBud’s flowAuth component, which integrates user-

specific audio and piezoelectric modalities, detects input inconsis-

tencies, thwarting all malicious attacks.

Figure 13: PiezoBud is attached to a skull’s ear. A computer

plays audio through an amplifier and speaker.

Scenario 3. Attackers use recorded audio data as input via

different media. Furthermore, we envision attackers using a

speaker within a synthetic human skull model to produce fake

audio and piezoelectric data simultaneously, mimicking a human

user (as shown in Figure 13). PiezoBud successfully countered all

100 attack attempts. The emulated piezoelectric modality lacks the

user’s distinct bio-metric properties, allowing PiezoBud to effec-

tively reject these attacks.

Scenario 4. Attackers train piezo-to-audio converter networks

with limited datasets. Attackers might use voice conversion

networks to create synthetic piezoelectric data from recorded audio.

Assuming a limited dataset (10 people), we use RVC [70] to generate

piezoelectric data from audio. We select 40 minutes of data from 10

random users out of the previous 85 subjects. After training, we use

newly collected volunteer audio to generate synthetic piezoelectric

data. We disassemble PiezoBud and feed the recorded audio and

synthetic piezoelectric data into the PCB pins. None of the 100

attacks bypassed PiezoBud, proving voice conversion techniques

can’t mimic the unique audio-piezoelectric relationship.

8.5 Latency and Energy Consumption

Since PiezoBud aims to perform the entire authentication process

locally, we assess the model’s complexity and feasibility by measur-

ing processing times on various mobile devices, as shown in Table 4.

Even on a five-year-old smartphone (Pixel 4), PiezoBud completes

the authentication process in up to 100 ms, significantly shorter
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than the 500 ms sampling window and works in Table 1. This result

validates the successful design of FusionSecNet on smartphones.

Apart from that, we also assess PiezoBud’s battery performance

using a Monsoon power monitor [71]. Power was supplied from a

3.3V DC source, simulating a coin cell battery. The system’s average

power consumptionwas 23.624mW.With a CR2032 coin cell battery

(210 mAh), PiezoBud can run continuously for about 10 hours.

8.6 User Experience Study

We survey 85 participants using a 5-point Likert scale. Our pro-

totype receives ratings of 4.52 for comfort, 4.79 for size, and 4.35

for weight, indicating high satisfaction. Integrating piezoelectric

sensors does not compromise performance, as 88% of participants

report minimal awareness of the sensor. Additionally, 82% of respon-

dents expressed interest in purchasing earbuds with authentication

and protection against malicious attacks, underscoring the demand

for enhanced security features.

9 RELATEDWORKS

9.1 Sole Voiceprint User Authentication

Voiceprint-based authentication is widely adopted in multiple areas

ranging from mobile [14] to IoT devices [13]. However, it overlooks

the aspect of liveness [72], as it solely focuses on the physiological

traits of speech. This oversight makes it vulnerable to spoofing and

replay attacks [15]. LiVoAuth [73] and VoiceGesture [74] tackle

voice authentication issues using vector sequences and articulatory

gestures, while CaField [75] combats loudspeaker-based spoofing

attacks by utilizing the ‘fieldprint’, a physical field of acoustic en-

ergy created as the sound propagates over the air. Despite their

innovations, [73] and [74] struggle with environmental noise and

user-device positioning, and [75] faces challenges in maintaining

authentication across different sessions. In contrast, PiezoBud over-

comes environmental and movement limitations by incorporating

a miniature piezoelectric sensor, thereby enhancing effectiveness.

9.2 Multi-Modal Voiceprint Authentication

Recent studies have delved into voiceprint-based security using

various sensor modalities, yet they face significant challenges. [76]

employs mmWave to bolster VA security, but its integration into

COTS earbuds is hindered by the requirement for large and com-

plex devices. [3] and [2] enhance authentication by exploiting the

unique shape of the ear canal, while [74] utilizes articulatory ges-

tures. However, these methods are vulnerable to environmental

noise and bodily changes. [1] introduces NAM signal collection via

an in-ear microphone as an additional modality, but the prolonged

data required for enrollment (75 seconds) hinders its practicality.

[5–7] adopt IMU/ACC for user verification, facing constraints like

limited attack scenarios and lack of real-time text independence.

[8, 9] use piezoelectric sensors for NAM signal detection, yet the

sensors’ size and the computational intensity of the algorithms

present practical limitations. Meanwhile, [8] functions solely as

liveness detection, overlooking the risk of device theft. Addition-

ally, it faces challenges in scenarios where user identification is

needed [77]. [9] necessitates extensive enrollment data (107 sec-

onds) and experiences latency ranging from 2.17 to 4.53 seconds,

Phone Model
Running time (ms)

SynthEx flowAuth Overall

iPhone 13 23.08 3.25 49.41

iPhone 14 Pro Max 20.79 2.18 43.76

iPhone 15 Pro 19.92 2.01 41.85

Pixel 4 44.27 6.02 94.56

Pixel 4 XL 43.22 5.82 92.26

Pixel 6a 33.43 3.35 70.21

Table 4: Processing time of each phone model.

which constrains its practical application. PiezoBud overcomes pre-

vious limitations by providing liveness detection, user verification,

and user identification with superior performance. Besides, its open-

source platform allows integration with COTS earbuds, enhancing

security without compromising user experience.

10 DISCUSSION

Human Voice Volume: Since the NAM signal is directly related

to body vibrations, PiezoBud may experience reduced performance

when users speak at lower volumes, as the resulting vibrations

are weaker and more challenging to capture. In future work, we

aim to address this limitation by refining the hardware design to

amplify the raw signal strength, potentially through more sensitive

piezoelectric sensors, improved amplification circuits, or optimized

sensor placement to better capture subtle body vibrations during

soft speech. This enhancement will allow PiezoBud to maintain

high performance even in low-volume speech scenarios.

Impedance Match: In our current prototype, we employed a

commonly used COTS amplifier for convenience and accessibil-

ity. However, this amplifier does not achieve impedance matching

with the piezoelectric sensor. The impedance mismatch can lead

to suboptimal signal transfer, resulting in reduced sensitivity and

potential loss of important signal details captured by the sensor. For

better performance in future designs, we could further improve the

performance by integrating an amplifier specifically impedance-

matched to the piezoelectric sensor.

11 CONCLUSION

This paper introduces PiezoBud, a cost-efficient, multi-modal wire-

less earbuds authentication system with open-source hardware. In-

tegrating a miniature piezoelectric sensor, PiezoBud preserves user

experience. Using 516 minutes of data from 85 subjects, PiezoBud

achieves a low EER of 1.05% with 15 seconds of enrollment, out-

performing SOTA baselines. PiezoBud counters advanced attacks,

adapts to environmental changes, resists body motions, handles

daily scenarios, enhances privacy, offers low latency and energy

consumption, and provides local text-independent authentication.
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