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Abstract—Indoor human activity recognition has been exten-
sively investigated. However, most of the solutions require sensors
e.g. 9-axis IMU be equipped on human body or use image
processing that presents privacy issues. This work proposes an
ambient radar sensor based a solution to recognize the activities
that humans normally perform in indoor environments. This
solution uses a 7.8 GHz radar to emit 16 pulse signals every
second and samples the reflected signals at 128 KHz to capture
the fine dynamics of human activities. This solution designs a
set of data preprocessing algorithms, including a data refining
algorithm to filter outlier data, a contrastive divergence algorithm
to remove background static reflection, and a transformation
algorithm to convert the signal data into feature-rich spatial
location changes. This solution also develops schemes to separate
a collection of various activities into individuals. A lowpass
frequency filter is designed to remove unwanted noisy data and
the motion intensity is used to classify the activities into two
high-level groups. It uses a slope-based approach and a k-means
clustering to further finely recognize each activity. This solution
has been extensively evaluated in a spacious research lab room
and shows outstanding accuracy.

I. INTRODUCTION

Indoor human activity recognition is crucial to many intel-
ligent systems such as smart homes, smart health as well as
smart security [1]. For instance, potential crash may occur
when children jog or do some intense activities inside the
home [2]. Elderly people have the potential to fall down when
they try to stand up or sit down [1]. Hence, human activity
recognition has been an active research area.

Many solutions have been proposed to recognize human ac-
tivities. Some systems use camera videos and computer vision
while many recent solutions are based on wearable sensors.
However, camera based solutions have potential privacy issues
[3]. Wearable based solutions result in inconvenience because
the users have to remember to equip these sensors or devices
such as smartphones. If they take off or forget the sensors or
devices, the recognition voids. Thus, it is of ultimate interest
to design a passive, non-invasive and ambient human activity
recognition solution that does not present privacy concerns.

In this paper, we propose a solution of indoor Human
Activity Recognition based on Ambient Radar sensors,

HARAR. This work considers four types of indoor activities:
sit-to-stand, stand-to-sit, walking and jogging. It has the fol-
lowing highlights:

• it uses miniature radar to emit signals at 16 pulse per
second while the measurement of the reflected signal
occurs at a very high frequency of 128 KHz to capture
very fine dynamics of activities.

• it proposes a chain of signal processing algorithms to: 1)
remove the exceptional measurement and interpolate the
replacement, 2) filter out the static background reflections
to keep only the motion reflections, and 3) transform
the signal data into relative location changes with rich
features.

• it designs: 1) an algorithm to separate the sequence of
activity mixture into individual activities, 2) a lowpass
filtering algorithm to remove the unwanted noisy compo-
nents in the data for accuracy, and 3) a motion intensity
based classification method to separate sit-to-stand and
stand-to-sit from walking and jogging.

• it invents two features: slope gradient and relative ve-
locity to recognize each activity finely with the k-means
machine learning algorithm.

In the remaining, a brief overview of the human activity
recognition and related work are presented in Section II.
Our proposed solution is detailed in the Section III including
the data preprocessing, coarse activity classification and fine
activity recognition. Section IV presents our validation and
verification of each key component of the solution and the
overall performance evaluation of the entire system. Finally,
Section V concludes this work.

II. RELATED WORK

A. Human Activity recognition

Human activity recognition has been investigated for many
smart home applications e.g. motion detection [4], [5]. Litera-
ture solutions have used various sensors, such as accelerome-
ters [6], Gyroscope [7], light sensors [8], temperature sensors
[9], videos [10], etc. There sensors become a rich data source
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of human objects’ life. For instance, wearable sensors have
been used for physiological states, such as step changes,
moving directions, speed, etc [4], [6], [11].

Based on the data from various sensors, many algorithms
have been proposed to recognize human activities [12]–[14].
Yan, et al, designed a multitask clustering algorithm to rec-
ognize activities with motion features derived from mobile
images [13]. Dixit and Naik investigated some prediction algo-
rithms to predict the next event to happen [14]. Their episode
discovery algorithm was designed to find the frequency of
occurrence of particular events.

B. Radar sensor

Radar sensor has been used in the military for long in
detecting flight objects, but it has been recently considered
for interactive systems and applications, because it does not
depend on lighting, noise or atmospheric conditions [15].
Google ATAP team has designed an mm-wave radar system
Soli based on 60 GHz signals to capture subtle motions in
finger gestures [16]. Soli emits signals at very high frequen-
cies, samples the reflected signals at KHz frequencies, then use
signal processing techniques to extract features, and employs
machine learning to recognize different finger gestures with
classification algorithms.

III. SYSTEM DESIGN

To enable smart environments with commodity ambient
sensors, we propose a solution: Human Activities Recognition
Based on Ambient Radar (HARAR). HARAR repeats emitting a
7.8 GHz wireless radio signal about every 0.7 second through
a sending antenna. Meanwhile, it actively measures the signal
power reflected by human body parts with an array of receiving
antennas. It then employs signal processing and machine
learning methods to accurately recognize human activities
based on the patterns of reflected signal power. We present
the detail system design of HARAR in this section, including
(a) data collection and (b)human activity recognition.

A. Sensing Platform, System Model and Data Collection

HARAR uses a continuous-wave radar sensing platform to
collect human activity data by following the radar principles
[1]. In particular, this sensing platform is based on Walabot1

that has a size of 72 mm × 140 mm. Walabot supports multiple
antenna pairs to sense a target area and each pair consists
of two directional antennas working on different frequency
ranges. FCC regulates the wireless operates over 3.3-10.3 GHz
range. The average transmission power of both models is about
-16 dBm.

Our radar sensing platform emits probing pulse signals
x(t) at a pulse repetition frequency (PRF) of 16 Hz, but
within each pulse repetition interval (PRI), the receiver antenna
samples the received signal y(t) at a very high frequency of
8 KHz. Considering human activities usually stay on lower
frequencies, such a radar sensing is capable enough to catch
activity dynamics. Although Walabot provides APIs to get

1https://walabot.com/community

preprocessed data at coarse resolutions, it does provide a
mechanism to extract raw received signal amplitudes at its
native analog-to-digit (ADC) rate, which offers the highest
resolution of data. Our system exactly uses this raw data option
to obtain the highest possible resolution data of signal variation
dynamics during human activities.

When a human object is within the detection area, body
parts can be modeled as a collection of reflective points, as
shown on Figure 1. The emitted signal x(t) arrives at and is
then modulated by body parts independently. As a result, the
radar signal signature y(t) at a receiver antenna is a mixture
of those modulated signals. The posture changes of body parts
in various activities are expected to result in different patterns
in the radar signal signatures. Therefore, by analyzing the
radar signal signature patterns, activities are expected to be
recognized.

Fig. 1: Radar Sensing

We model the radar frequency response of human activities
as a superposition of responses from a collection of N various
discrete body scattering points, which can be formulated as:

y(t) =

N−1∑
0

ρi(t)ri(t)x(t) (1)

where ρi(t) is the complex reflectivity parameter of the body
reflective point i, ri(t) presents the corresponding round-
trip channel response between the radar sensor and the body
reflective point i.

It should be noted that the received signal y(t) contains
not only reflections from body parts, but also those from
environment background. We define background reflections as
“noise” n(t) to the activity signals. Then y(t) follows:

y(t) =

N−1∑
0

ρi(t)ri(t)x(t) + n(t) (2)

As the received signal signature y(t) carries the information
of body activities, we use its amplitude |y(t)| as the data
to drive our activity recognition and analytics. Based on the
radar principle, we define two types of windows: short window
and long window. A long window is composed of a number
of short windows each of which consists of n consecutive
samples of |y(ti)|. The short window size n is empirically
determined and it should be small enough to capture significant
body part movements in an activity. We denote the data in the
short window k as Ak = (|yk0(t)|, |yk1(t)|, ...|yk(n−1)(t)|),
and the data of a long window S as S = (A0, A1, ...Al).
In particular, our solution has the short window consisting of
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500 consecutive measurements of |y(t)|. The long window
spans an PRI consisting of 16 short windows for 8,000
measurements in total. Therefore, we have the short window
data Ak = (|yk0(t)|, |yk1(t)|, ...|yk(499)(t)|), and the long
window data S = (A0, A1, ...A15).

B. Human Activity Recognition

With radar signal data collected and formatted into short and
long windows, the activity recognition of HARAR is perfomed
with three core modules: (1) data preprocessing that extracts
the signal

∑N−1
0 ρi(t)ri(t)x(t) reflected by human body parts

from the received signal mixture with noise, or namely filters
out the background noise n(t) from y(t), (2) coarse activity
classification that categorizes preprocessed signals into two
groups: high-frequency and low-intensity activities, with a
lowpass filter algorithm, and (3) fine activity recognition that
recognizes specific activities in each group. The recognition
procedure is illustrated as in Fig. 2.

Data 

Preprocessing

Data Transformation

Activity Separation 

Slope Based 

Recognition

Coarse Activity 

Classification

Data Refining

Radar Raw data

Background 

Reflection Removal

Frequency Filtering 

Intensity Based 

Classification 

K-means 

Recognition

Fine Activity 

Recognition

 Stand-to-Sit Sit-to-Stand WalkingJogging

Fig. 2: Block diagram of the system design

1) Data Preprocessing: After raw measurements of y(t)|
are obtained, these data pass through a chain of signal pro-
cessing blocks that: 1) filter out the background noise from
the received mixture measurements, 2) remove exceptional
measurements, and 3) transform the data for feature extraction.

Data Refining: The collected radar signal data is noisy
because of: (1) the irregular surfaces of static objects in a
background environment, (2) unexpected other signals, and (3)
the imperfect mechanical capabilities e.g. reliability, stability,
accuracy and resolution of the off-the shelf device.

The first step of the data preprocessing is to remove those
exceptional data in each short window. In our platform, the
transmitted radar signal has an upper bound amplitude. After
the path loss and multi-path fading, the amplitude of the
received radar signal y(t) should be less than that of the

transmitted signal x(t). Namely this follows: |y(t)|< |x(t)|.
Therefore, our algorithm removes a measurement |yi(t)| if
|yi(t)|> |x(t)|. To keep the same number of measurements
in each short window, an interpolated measurement is needed.
In our solution, the removed measurement is replaced by
the mean of its previous and next measurements: yi =
mean(yi−1, yi+1).

Background Reflection Removal: Even after the excep-
tional data are removed, measurements contain both the signal
reflected by body parts and by a background environment.
One important observation is that, since a background envi-
ronment is static, there should be no change on its reflection
in different radar signal intervals. Namely, the variations of
measurements across short or long windows should be only
incurred by human body activities. Based on this observation,
we design a contrastive divergence algorithm [17] to remove
the background reflected signal and keep only reflections by
body parts.

As shown in Equation (4), the contrastive divergence algo-
rithm first calculates the divergence of all measurements be-
tween every two consecutive short windows, namely |Ak+1−
Ak|, and then identifies and denotes the maximal divergence
with its index i as Di, which indicates the activity results
in a signal variation peak at the i-th measurement in a short
window.
Di = max(|Ak+1 −Ak|) (3)

= max(|Ak+1[0]−Ak[0])|, ..., |Ak+1[n− 1]−Ak[n− 1]|)
(4)

Data Transformation: After the activity is captured with
the maximal divergence Di by the contrastive divergence algo-
rithm, we only know its occurrence at a certain measurement
moment in a particular short window. To recognize various
activities, it is necessary to gain the knowledge of how the
location (namely the occurrence moment) of the maximal
divergence D temporally changes across a sequence of short
windows. It is the pattern of the temporal location change of D
that indicates various activities. We will use this information
across the short windows in each long window S for activity
recognition.

It is difficult to obtain the temporal location change of D.
We rather transform the temporal location change of D across
short windows to a relative spatial location change L, which,
based on wireless propagation, is defined as:

Li = |Ii − I0|×c/2 (5)

where Ii and I0 respectively represent the occurrence indice
of D in the i-th and the first short window in a long window,
c is the speed of light, and the division by 2 is due to the radar
signal round-trip propagation.

The transformation outcome is a vector M of a long window
S, which records maximal divergence D and its relative spatial
locations across a sequence of short windows. Suppose each
long window S contains n short windows. M has a format as:

M =
[
(D0, L0) (D1, L1) · · · (Dn−1, Ln−1)

]
(6)
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2) Coarse Activity Classification: With the preprocessed
data M across long windows, we further process the data
to extract the high-level activity features, which includes (1)
identifying individual activity occurrences, and (2) extracting
body activity frequencies for each activity.

Activity Separation: With a period of time T modulated
into a number of long windows (S0, S1...), the activities
occurring over the time period T can be separated with the data
(M0,M1...) over the long windows (S0, S1...). Observing that
between two activities there is only static “silent” background
environment that results in 0 for the maximal divergence D,
the activities are thus separated by a streak of “0”s in M . We
define the activity length as a time-span Tspan of the activity:

Tspan = tend − tstart (7)

where tend denotes the time when the activity ends, and tstart
denotes the time when the activity starts. For instance, if an M
has the data of (0, 0, Di, Di+1, Di+2, · · ·, Dn, 0, 0), the time
of Di is counted as tstart, and the time of Dn is tend. The
time-span Tspan is used to indicate a single complete activity
phase. Then, deep features will be extracted over each Tspan
for the activity recognition.

Frequency Filtering: From frequency domain perspectives,
human activities normally occur at low frequencies. For ex-
ample, walking or running at certain velocities that cannot
be as fast as a car, standing or sitting falling into a motion
speed and acceleration range that are relatively small [18]. To
further improve the recognition accuracy, we use a lowpass
filter, Butterworth filter (BWF) algorithm [19], to remove
all unwanted components from the preprocessed data and
keep only the human activity data for the recognition. BWF
filter focuses on eliminating noises and keeping fundamental
activity motion information. It works as:

H(ω)2 =
G0

2

1 + ( ω
ωc
)2n

(8)

where ωc denotes cutoff frequency, ω denotes the input fre-
quency. G0 denotes the DC gain (the gain at zero frequency),
which is a constant, and n represents the order of filter. The
output H(ω)2 denotes the gain of the BWF working on the
signal of frequency ω. After the cutoff frequency ωc is set,
the processed signal data contains only those frequencies less
than or equal to ωc.

In our solution, the vectors M of each separated activity are
the input data to the BWF filter. The cutoff frequency ωc is
determined according to the research outcomes on frequency
and velocity of people walking [18].

Intensity Based Classification: In activities: sit-to-stand,
stand-to-sit, walking, and jogging, sit-to-stand and stand-to-
sit obviously do not result in as much intensity as walking
and jogging do. Therefore, they expect to incur much smaller
relative spatial location changes L than those of walking
and jogging. Therefore, the output of our BWF algorithm
is classified into two categories: low-intensity activities and
high-intensity activities based on their relative spatial loca-
tion changes L. From our extensive tests, L=1.0 is the best

threshold to differentiate these two categories. The fine activity
recognition within these two categories is then performed by
exploiting deep features as described next.

C. Fine Activity Recognition

After activities into two categories upon the motion intensity
in the data, the final activity recognition is performed within
each class.

1) Low-Intensity Activity Recognition: The low-intensity
activities includes sit-to-stand and stand-to-sit. From the nu-
merous measurements in these two activities, we have ob-
served that they result in two opposite slopes in the relative
spatial location changes L as defined in Equation (5): ascend-
ing and descending. This is because, no matter how the radar
sensor is deployed, these two activities result in either the body
approaching to the sensor or departing from the sensor in the
space. In our system where the sensor is deployed on a desk
that faces to the upper body portion, sit-to-stand generates an
approaching style leading to a descending slope in L while
stand-to-sit incurs an ascending slope.

The slope detection is performed as follows. These activities
are first separated and extracted over a sequence of long
windows with the time spanning algorithm in Equation 7. As a
result, each Tspan contains an activity of either sit-to-stand or
stand-to-sit. Since the slope of each activity can be only either
ascending or descending, the slope is determined according to
the relative spatial location changes L in the Tspan.

2) High-Intensity Activity Recognition: For high-intensity
activities walking and jogging, they obviously differ in motion
velocity. Thus, we use the velocity as the key feature to
differentiate them. Reasonably assuming the velocity of the
body does not change widely within a few of long windows,
with the observation that the motion results in contrastive
divergence D occurring at various indices in a sequence of
long windows, the velocity Vi in the i-th long window of an
activity follows:

Vi ∝
1

|Ii − Ii−1|
(9)

where Ii is the maximal contrastive divergence occurring index
in the long window. Therefore, rather than getting the actual
velocity, we use |Ii−Ii−1| as a “relative velocity” to represent
the actual velocity in recognition. After we obtain the velocity,
we then use k-means classification algorithm to different the
walking and jogging activities.

IV. PERFORMANCE EVALUATION

We have extensively evaluated the performance of our
HARAR in a real environment.

A. Experiment Setting

The experiments have been performed in the Intelligent
Computing and Communication Systems research lab RB305
at Ball State University. The lab room has a “L” shape with 10
desks and some other furnitures such as chairs and cabinets.
This room has a wide space to allow people to perform test
activities as in regular life. Figure 3 shows the deployment
of the test platform in a part of the room. In sit-to-stand
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and stand-to-sit, the human object is 2m away from the radar
sensor. In walking and jogging, the human object moves up to
5m from the radar sensor.

Fig. 3: Experiment Setting

B. Activity Detection and patterns

The first evaluation is to verify the effectiveness of HARAR
in detecting human body motions and forming activity pat-
terns. In the experiments, the human objects have performed
each of those four activities for 30 seconds. During walking
and jogging, the human objects move back and forth. To
magnify the details, we have selected the data of the first
150 out of about 430 long windows in each activity. The
results are plotted in Figure 4, where y-axis of all sub-figures
represents the received signal power level in the scale of
the radar, and x-axis tells the long window number. It can
be observed that (1) sit-to-stand and stand-to-sit both result
in clearly lower frequencies and received power levels than
walking and jogging, and (2) the data of walking and jogging
seems continuous while sit-to-stand and stand-to-sit are bursty.
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Fig. 4: Activity Detection and Patterns

C. Coarse Activity Classification

This experiment evaluates the effectiveness of using the
BWF frequency filter algorithm and the motion intensity to
classify the activities into two coarse categories. The BWF
filter algorithm has been applied to the entire 430 preprocessed

activity data in each activity that are collected in the experi-
ments in Section IV-B. The cutoff frequency ωc is loosely set
to 3.3 Hz to allow the activity frequencies are captured safely.
The results of four activities are illustrated in Figure 5 where
y-axis still refers to the relative spatial location change L.
From the frequency domain analysis, sit-to-stand and stand-
to-sit have peak frequencies smaller than 3 Hz while those of
walking and jogging are larger than 3 Hz. Meanwhile, walking
and jogging have mostly resulted large relative spatial location
changes (0.5, 3) on the y-axis while sit-to-stand and stand-to-
sit have the values smaller than 1.0. This meets the expectation
and analysis in Section III-B2.
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Fig. 5: BWF Frequency Filtering on Activity Data

D. Fine Activity Recognition

We have then performed experiments to evaluate the effec-
tiveness of fine activity recognition algorithms in each coarse
activity group.

1) Low-Frequency Activities: In this experiment, the human
objects have continuously performed seven sit-to-stand and
six stand-to-sit activities. The data has been first preprocessed
to generate the relative spatial location changes L over long
windows, which is plotted on the left in Figure 6. We have
then used the time spanning algorithm as in Section III-B2 to
separate activities, and the slope detection algorithm in Section
III-C1 to determine the activity is sit-to-stand or stand-to-sit.
As a result, HARAR can accurately recognize those seven sit-
to-stand and six stand-to-sit activities.

2) High-Frequency Activities: In this experiment, the hu-
man objects have walked back and forth at random speeds
in one minute and then jogged for another minute. After
preprocessing, we have calculated the relative velocities as
in Section III-C2, which is plotted in Figure 7 with 880 data
points where the dots in blue are from jogging and red dots
are from walking. We can observe that the relative velocity
clearly shows advantages in differing these two activities.

E. Accuracy

Finally, we have evaluated the prediction accuracy of
HARAR in activity recognition. We have performed all four
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types of activities totally for 80 tests: 23 walkings, 20 jog-
gings, 17 sit-to-stands and 20 stand-to-sits. Each activity has
lasted for 60 seconds. All the data have been mixed together
and preprocessed. Then they are passed in the frequency
filtering and classified into two coarse categories. Then the
final recognition has been performed in each category. The
recognition between walking and jogging is performed with
k-means algorithm based on the relative velocity as in Section
III-C2. The results are shown in Table I. The accuracies for
walking, jogging, sit-to-stand, and stand-to-sit are respectively:
82.6%, 95%, 82.3%, and 80%. The overall accuracy is 85%.
The performance seems not very high, but it is outstanding
with only the radar sensor without extra equipment.

TABLE I: Prediction Accuracy

Recognized/Actual walking jogging sit-to-stand stand-to-sit
walking 19 1 0 0
jogging 1 19 0 0

sit-to-stand 2 0 14 4
stand-to-sit 1 0 3 16

V. CONCLUSION

In this work, we propose a radar-based indoor human
activity recognition solution, HARAR. This solution avoids
the inconvenience of many literature solutions that requires

sensors be installed on human bodies. HARAR measures the
human activities with radar signals at very high frequency
sampling to capture activity dynamics. Window-based signal
processing algorithms are designed to remove background
environment noise. A set of features are designed in HARAR to
recognize the activities. The extensive evaluations demonstrate
that HARAR can achieve an accuracy of 85%.

REFERENCES

[1] Branka Jokanovic, Moeness Amin, and Fauzia Ahmad. Radar fall motion
detection using deep learning. In Radar Conference (RadarConf), 2016
IEEE, pages 1–6. IEEE, 2016.

[2] Jun Goto, Takuya Kidokoro, Tomohiro Ogura, and Satoshi Suzuki.
Activity recognition system for watching over infant children. In RO-
MAN, 2013 IEEE, pages 473–477. IEEE, 2013.

[3] Yoshifumi Nishida, Toshio Hori, Shin-ichi Murakami, and Hiroshi
Mizoguchi. Minimally privacy-violative system for locating human by
ultrasonic radar embedded on ceiling. In Systems, Man and Cybernetics,
2004 IEEE International Conference on, volume 2, pages 1549–1554.
IEEE, 2004.

[4] Xing Su, Hanghang Tong, and Ping Ji. Activity recognition with
smartphone sensors. Tsinghua Science and Technology, 19(3):235–249,
2014.

[5] Miss Sapana K Mishra, Faizpur JTMCOE, and KS Bhagat. A survey
on human motion detection and surveillance. International Journal
of Advanced Research in Electronics and Communication Engineering
(IJARECE) Volume, 4, 2015.

[6] Subhas Chandra Mukhopadhyay. Wearable sensors for human activity
monitoring: A review. IEEE sensors journal, 15(3):1321–1330, 2015.

[7] Stefan Dernbach, Barnan Das, Narayanan C Krishnan, Brian L Thomas,
and Diane J Cook. Simple and complex activity recognition through
smart phones. In Intelligent Environments (IE), 2012 8th International
Conference on, pages 214–221. IEEE, 2012.

[8] Uwe Maurer, Asim Smailagic, Daniel P Siewiorek, and Michael Deisher.
Activity recognition and monitoring using multiple sensors on different
body positions. In Wearable and Implantable Body Sensor Networks,
2006. BSN 2006. International Workshop on, pages 4–pp. IEEE, 2006.

[9] Tanzeem Choudhury, Sunny Consolvo, Beverly Harrison, Jeffrey High-
tower, Anthony LaMarca, Louis LeGrand, Ali Rahimi, Adam Rea,
G Bordello, Bruce Hemingway, et al. The mobile sensing platform:
An embedded activity recognition system. IEEE Pervasive Computing,
7(2), 2008.

[10] Jay Prakash Gupta, Pushkar Dixit, and Vijay Bhaskar Semwal. Analysis
of gait pattern to recognize the human activities. IJIMAI, 2(7):7–16,
2014.

[11] Piyush Gupta and Tim Dallas. Feature selection and activity recognition
system using a single triaxial accelerometer. IEEE Transactions on
Biomedical Engineering, 61(6):1780–1786, 2014.

[12] Sajal Das and Diane Cook. Designing smart environments: A paradigm
based on learning and prediction. Pattern Recognition and Machine
Intelligence, pages 80–90, 2005.

[13] Yan Yan, Elisa Ricci, Gaowen Liu, and Nicu Sebe. Egocentric daily
activity recognition via multitask clustering. IEEE Transactions on
Image Processing, 24(10):2984–2995, 2015.

[14] Aditi Dixit and Anjali Naik. Use of prediction algorithms in smart
homes. International Journal of Machine Learning and Computing,
4(2):157, 2014.

[15] Youngwook Kim, Sungjae Ha, and Jihoon Kwon. Human detection
using doppler radar based on physical characteristics of targets. IEEE
Geoscience and Remote Sensing Letters, 12(2):289–293, 2015.

[16] Jaime Lien, Nicholas Gillian, M Emre Karagozler, Patrick Amihood,
Carsten Schwesig, Erik Olson, Hakim Raja, and Ivan Poupyrev. Soli:
Ubiquitous gesture sensing with millimeter wave radar. ACM Transac-
tions on Graphics (TOG), 35(4):142, 2016.

[17] Geoffrey E Hinton. Training products of experts by minimizing
contrastive divergence. Training, 14(8), 2006.

[18] Tianjian Ji et al. Frequency and velocity of people walking. Structural
Engineer, 84(3):36–40, 2005.

[19] A Soltan Ali, Ahmed Gomaa Radwan, and Ahmed M Soliman. Frac-
tional order butterworth filter: active and passive realizations. IEEE
Journal on emerging and selected topics in circuits and systems,
3(3):346–354, 2013.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 11,2023 at 14:04:29 UTC from IEEE Xplore.  Restrictions apply. 


