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Abstract—Smart health calls for novel approaches to detect
vital signs in non-contact, non-invasive and non-intrusive matters.
In this work, we design a solution that monitors the rates of
heartbeats and respiration simultaneously by using a Frequency
Modulated Continuous Wave (FMCW) radar with multiple
antennas. This solution measures the reflections from heartbeats
and respiration at a high frequency of 4 KHz to capture
fine dynamics of motions with big data. It employs multiple
antennas and superposition to reduce the interference noises from
unwanted motions in the background and any detection defects.
The heart and respiration rates are detected in the frequency
domains after a chain of preprocessing techniques on the sensed
big data. With extensive experiments in a lab office, this system
demonstrates high accuracies in various cases: 98% in the still
case, 95% with finger motions and 96% with body motions. The
tests also confirm that multiple antennas and signal superposition
improve the detection accuracy and reliability.

Index Terms—smart health; wireless sensing; signal process-
ing; big data

I. INTRODUCTION

The development of internet of things (IoT) has already
changed people’s life. For example, smart security cameras
can warn users of unfamiliar visitors; smart thermostats auto-
matically adjust the settings based on temperature, occupancy
and user preferences, which doesn’t require user’s manual
effort. Along with the IoT advances is smart health that
plays an increasingly significant role in daily life. If a smart
environment can monitor human vital signs, potential health
problems can be identified in advance. People can be woken
up when life threats happen during the sleep, e.g., the cardiac
arrhythmia, to save their lives.

Current health monitoring devices, such as finger pulse
oximeters and smartwatches, require to install on human
bodies, which results in cumbersomeness to wear and un-
comfortable or inconvenient experiences. Most of the devices
are to obtain a specific vital sign such as heart or respiration
rates, but not multiple signs at one time. Many research efforts
have investigated non-contact approaches to health monitoring
by using wireless sensing such as Doppler radars [1], Ultra-
band radars [2], which correlates the distance variations to the
motions of hearts. However, those methods are too vulnerable
and sensitive to any extraneous motions, e.g., arm or finger
motions, so that the accuracy is not consistent.

In this project, we propose a non-contact health monitoring
system that can simultaneously detect both heart and respira-
tion rates by using FMCW (Frequency Modulated Continuous
Wave) sensing [3] at a very low cost of energy. The system
transmits a FMCW wireless signal towards a human subject
and receives the reflections. Because the amplitudes of the
wireless signals reflected by the body vary in patterns from
the periodic chest and heart movements, the heart rate and
respiration rate can be obtained from the continuously sampled
amplitude variations after cleaning any extraneous motions.
Even though the amplitudes are influenced by the compound
movements of the heart, chest, and even environmental noises,
heart and respiration rates can be still extracted and separated
because the patterns in amplitude variations, which can be
transformed into frequency domains, are robust to the changes
of amplitude value. The detection happens in the frequency
domain of the amplitude measurements. After reducing noises
and excluding unwanted frequencies from the target frequency
range, the frequencies of the peak magnitude in the FFT (Fast
Fourier Transform) spectrum that shows the periodicity of
the time-series measurements correspond to the heart rate or
the respiration rate. Furthermore, to improve accuracy, our
system for the first time employs multiple antenna pairs. Those
antenna pairs work simultaneously to capture the reflections
in different layouts and different ranges.

In short, this work has the following novelties.

• Our solution simultaneously detects the heart and respi-
ration rates from the same amplitude measurements of
wireless signals.

• It is the first work that employs MIMO radar sensing
with multiple pairs of antennas to improve the detection
accuracy and minimize the environmental exceptions and
interferences

In the rest, Section II briefs the literature and related
work of heart and respiration rate detection. Next, Section III
presents the detailed methodology, including how to make use
of multiple antennas pairs, eliminate noises and perform the
detection. Then, Section IV evaluates the performance on the
noise elimination and detection accuracy, which is followed
by the conclusion of this work in Section V.



II. RELATED WORK

The progress of Internet of Things (IoT) has made it
possible to build an IoT health care system, equipped with
sensor networks, to change the way how physicians delivery
care and benefit patients. Various non-contact non-invasive
methods of monitoring vital signs have been investigated in
the past few years, which fall into three areas: radio-based
systems, vision-based analysis, and optical-based techniques.

The radio-based systems include the uses of Doppler radars
[1], [4], [5], WiFi [6]–[8], and Ultra-band radars [2], [9]. The
radio-based systems estimate minute displacements of hearts,
requiring a high spatial resolution, resulting in expensive,
heavy apparatus and extra energy cost [10]. Due to the lack
of the capability to focus on particular spatial range, any
irrelevant motions will overwhelm the target signals.

The vision-based analyses amplify patterns extracted from
time-lapse images using cameras to extract vital signs [11]–
[13]. However, it doesn’t work in dark environments. Cameras
cannot see through people covered with a quilt during sleeping
either. Another issue with this type of approaches is the
concern of privacy with all personal activities are monitored.

The optic-based techniques track speckle patterns illumi-
nated by a laser beam on the human skin [14]–[16]. It
encounters the same issue as the vision-based method when
applies to sleeping scenarios. Moreover, the laser light can be
easily blocked to work effectively.

FMCW radars have been widely and long used for military
purposes. One strength of FMCW radars is its ability to sep-
arate reflections from different objects and allows excluding
extraneous motions out of target spatial ranges, and extracting
vital signs from amplitude changes caused by compound
movements of the heart and chest simultaneously. It does not
need an extremely high spatial resolution to differentiate two
type of movements.

III. SYSTEM DESIGN

In our proposed solution, a wireless signal is periodically
emitted and its reflected signals are captured by multiple an-
tennas and are reported in amplitudes. The amplitudes are first
preprocessed to retain only the reflections from the motions of
hearts and breaths by removing static background reflections.
Then a bandpass filter is applied to remove exceptions. After
that, measurements are segmented to remove outliers from
unexpected motions. Finally, magnitude peaks in frequency
domains are used to detect the heart and respiration rates.

A. System Model
In our solution, an MIMO radar emits a signal xk(t) at the

k-th pulse repetition interval (PRI). When a human is within
the detection coverage, the body parts including the heart and
chest can be modeled as a collection of reflective points, as
shown in Figure 1. As a result, the reflection signal signature
yk(t) at a receiver antenna is a superposition of those reflection
signals modulated by each body part independently:

yk(t) =

N−1∑
0

ρi(t)ri(t)xk(t) (1)

Fig. 1. The System model.

Fig. 2. The amplitudes of reflected signals over a PRI.

where N refers to the number of body reflective points
including the heart and chest, ρi(t) is the complex reflectivity
parameter of the body reflective point i, and ri(t) presents the
corresponding round-trip channel response between the radar
sensor and the body reflective point i.

It should be noted that the received signal y(t) contains
not only reflections from body parts but also those from
environment background. We define background reflections as
“noise” n(t) to the activity signals. Then y(t) follows:

yk(t) =

N−1∑
0

ρi(t)ri(t)xk(t) + n(t) (2)

Clearly, yk(t) contains the signals reflected by the heart
and chest. Consequently, the variation of yk(t) over a number
of PRIs also contains the reflection variations due to the
heartbeats and respiration.

B. Data Measurements

In our system, a unique novelty is to use a high-frequency
data measurement at kHz to capture the highly fine dynamics
of a reflection signal due to any motions in each PRI. Specif-
ically, yk(t) is measured of 4096 times equally over a PRI,
which captures the reflections from the objects at a fine spatial
resolution of 1

4096 . An example is shown in Figure 2, which
has 35 for the pulse repetition frequency (the inverse of PRI).

To capture the signal reflection variations due to heartbeats
and respiration, we reformat the measurements according to
the measurement indices in a PRI. Therefore, the k-th PRI
results in 4096 measurements yk(n) where n refers to the n-th
measurement with n ∈ [0, 4095]. Then, yk(n) with k ∈ [0,K]



Fig. 3. Rearranged measurements over 1000 RPIs according to the measure-
ment indices within a PRI. There only shows 5 out of 4096 measurements
for illustration.

are the measurements at the index n over K PRIs, which
contains the spatial variations of a reflective point contributing
to the measurements at the index n. An example is plotted
in Figure 3 where each sequence represents the amplitudes
measured at a particular index over 1,000 PRIs, with the
reflected noisy motions, which have higher amplitudes than
that of the surrounding periodical parts, highlighted with the
boxed area.

C. Motion Localization

Within each PRI, although the very high-resolution mea-
surements at 4096 Hz can capture a wide range of motions
in the surrounding, it is obvious that the heartbeats and the
respiration will only result in impacts on a certain range of
measurement indices, not all of them, which can be clearly
observed from Figure 2, for example, where the motions are
captured by measurements yk0(n) with n ⩽ 200 on the
left portion of the diagram. As a result, the measurement
temporal sequences at other indices will mostly contain no
motions. Elimination of these measurements without motions
will definitely improve the computation efficiency and the
detection accuracy because only a few sequences are retained
and the motion signals are less interfered by other sequences.

We design a standard deviation based motion signal se-
lection scheme. Intuitively, the measurement sequences with
motions will fluctuate in amplitudes, which results in large
standard deviations. Those measurements with standard devi-
ations less than a threshold are excluded for further processing.

D. Data Preprocessing

Before we perform detections of heart and respiration rates,
the static background and the motions other than the heartbeats
and respiration in the background should be removed.

1) Background Removal: To remove the static background
reflections, the system first keeps sensing the environment
and obtains the average static background reflections from a
number of PRIs: ȳk.

Then, background removal in the detection stage is imple-
mented as the measurements at each PRI index subtract its
background reflection average: yk − ȳk.

2) Frequency Filtering: Sometimes, abrupt and unexpected
interferences result in overwhelmingly large reflection am-
plitudes that completely overshadow the reflections due to
heartbeats and respiration. To address this problem, after the
static background reflections are eliminated, a Butterworth
bandpass filter is employed to remove those frequency compo-
nents that are beyond the range of heartbeats and respiration.
The Discrete Fast Fourier Transformation (DFFT) magnitudes
for the sequence of temporal measurements at the n-th index
can be defined as:

F
′
(ω, n) =

K∑
p=0

X(p, n)δ(p
2π

N
− ω) (3)

where ω is the frequency, K is the length of the measurement
sequence of yk(n). The X(p, n) is the p-th FFT magnitude.
p 2π

N converts the magnitude index p to the frequency ω. Then
the frequency components remained after the Butterworth
filtering are:

F (ω, n) = |F
′
(ω, n)| · |H(ω − (ωl + ωc))

2| (4)

where the H is the function of Butterworth filter, and ωl, ωc

respectively denote the low-cut and high-cut frequencies of the
bandpass filter.

E. Elimination of Non-periodic Signals

Another challenge is to work on the reflection signals with
motions other than heartbeats or respiration. For example, the
motions of arms, body, or fingers will result in interference
to the reflections. One observation is that these unexpected
motions are very likely non-periodic. In time domains, the
abrupt energy of reflections from these motions could mask
out that of heartbeats or respiration motions if these motions
overlap.

To address this non-periodic interference issue, we design
a sliding window plus a segmentation scheme. First, a sliding
window is applied to a temporal measurement sequence yk(n).
Then each window of measurements is partitioned into two
equal-sized segments. The sliding window makes as many
measurements as possible to reserve the periodicity of heart-
beats and respiration, while the segmentation is used to locate
and isolate the non-periodic components. An example is shown
in Figure 4 of this process. At the top, a sliding window with
size 340 is applied and then each window is divided into two
segments of 170 measurements each.

After the segmentation, with the observation that non-
periodic temporal signals are transformed into small back-
ground frequency components on the FFT spectrum, our
system performs the FFT on each segment. Then, a ratio
measuring the periodicity is computed for each segment, which
is defined as the dominant FFT magnitude divided by the
average FFT magnitude. A segment is excluded from the data
pool if its periodicity ratio is smaller than a preset threshold.



Fig. 4. Sliding window with segmentation partitions the temporal measure-
ments to isolate interferences and non-periodic unwanted motions.

0 20 40 60 80 100 120 140
Heart Rate (in beats per minute)

0.00

0.01

0.02

0.03

0.04

0.05

FF
T 
M
ag

ni
tu
de

F1
F2
F3
Fsum

Fig. 5. Superposing FFT magnitudes to reduce the impact of the defective
measurements of F1 on the detection.

F. Rates Detection

After data has been preprocessed with background, interfer-
ences and unconcerned frequency components removed, the
rates detection is performed as below.

1) Superposing FFT magnitudes: With tens of PRIs in each
second and each PRI is sampled at 4096Hz, it is obvious that
the periodic heartbeats and respiration will result in periodic
variations of the amplitude measurement yk(n) at each sample
index. To avoid any sample exception or deficiency, we
superpose the FFT magnitudes of the concurrent measurement
sequences at the indices retained after the preprocessing. The
superposition can make the peak magnitudes prominent, which
are corresponded to the heart/respiration rates. For example,
as Figure 5 shows, the three curves stand for the FFT mag-
nitudes corresponding to heart rates that are converted from
frequencies. Superposing three curves relieves the impact of
the error peak of the curve F1, and the heart rate corresponding
to the peak magnitude of the superposed curve is taken. The
superposition operation is performed as:

Fsum =
∑
j∈A

∑
n∈C

Fj(ω, n) (5)

where the set C is a collection of indices of retrained mea-
surement sequences after the date preprocessing as described
in Section III-D, and the j denotes the identity of antenna
pairs in the collection of antenna pairs A.

The superposition of FFT magnitudes is also performed
to the measurements from different antenna pairs. Denot-
ing the measurements from two antenna pairs as Sk(n)
and Hk(n), the new sets of measurements, concurrently
captured from the same implementation would be: M =

{Sk(1), Sk(2), ..., Sk(n), Hk(1), Hk(2), ...,Hk(n)}. Refer to
Section III-B for more details of the equation. Using multiple
sources of time-series signals provides more references for cor-
recting errors, and produces a commonly acknowledged result
by multiple concurrent temporal measurement sequences.

2) Rates Determination: After the superposition is per-
formed to each window of measurements, which is the divided
temporal measurements as Figure 4 shows, the frequency that
has the peak magnitude in the Fsum is considered as the heart
rate.

IV. PERFORMANCE EVALUATION

We have implemented the solution on a testbed and evalu-
ated the performance with a medical device.

A. Ground Truth

An FDA-approved Bluetooth fingertip pulse oximeter is
used for the ground truth of heart rates. The oximeter measures
heart rates by sensing the light abortion degree from shining
the light into the skin [17]. The heart rate data are logged onto
a mobile phone via Bluetooth. The oximeter generates a heart
rate based on the continuous measuring for every 30 seconds,
using its built-in algorithm.

B. Experiment Settings

An FMCW radio-frequency-based radar sensor, called Wal-
abot, is used, and its bandwidth ranges from 3.3 to 10.3 GHz.
The maximum spatial resolution is about 2 cm. Four antennas
are used in capturing reflected signals from different angles
and directions, though the device supports up to 18 antennas
[18]. The device’s PRF (Pulse Repetition Rate) is 35 Hz. Based
on the Nyquist sampling theorem, the maximum detectable
frequency is 17.5 Hz, which is equivalently 1050 heartbeats
per minute. Namely, the PRF is far more than enough to detect
regular heartbeats. The average transmit power is about -16
dBm, so it can only support detection within a short range in
the experiments. For the software, our solution is implemented
in Windows 10 with the data measurements from the Walabot
API (Application Programming Interface).

The experiments have been performed in a regular lab office.
As Figure 1 presents, the sensing device is placed on the table,
with the antennas on the front pane facing the subject’s chest,
who sits at the table. The subject also wears the finger pulse
oximeter connected to a smartphone for logging ground truth
data. The distance between subject’s chest and the radar sensor
is limited to 1 m to achieve the best measuring outcome.

C. Performance on Accuracy

We have evaluated the accuracy of detecting respiration and
heart rates in various situations.

1) Rates Detection with Quasi-Static Subjects: The first test
is on the detection accuracy when the subject is quasi-static
without any other body parts moving. We test the detection of
both heart rates and respiration rates. There are 10 independent
experiments conducted. For each experiment, the radar sensor
keeps recording the data for 30 seconds.



Fig. 6. The accuracies as the subject keeps still.

Fig. 7. The respiration rate accuracies with the static subject

Fig. 8. The accuracies as the subject fingers operating a mobile phone.

The first case is for the heart rate. To capture the heart
rate changes in each second, the sliding windows size is set
to 35 measurements corresponding to the average sampling
frequency of 35 Hz. The radar sensor is placed 0.5 m away
from the subjects, placed on the table as Figure 1 shows.

The performance is plotted in Figure 6. The accuracy is
computed as the percentages to the ground truth. The experi-
ment results are arranged in the ascending order on the figure.
The average accuracy is above 98%, which is represented by
a horizontal dotted line.

The respiration rate result is shown in Figure 7. The average
respiration rate is 94%. Most of the detection give the accuracy
over 93.5%.

2) Body and Finger Movements: This test is to measure the
accuracy when the noises of finger motions are involved. The
test setup is as in the above test. A mobile phone is placed
on the table between the subject and the radar sensor. In the
test of 30 seconds, the subject randomly operates the mobile
phone as in daily use for totally 2 seconds, e.g., sliding on the

Fig. 9. The accuracies as the subject slightly moves body back and forth.

screen or clicking on the button. The test is repeated 10 times.
The results are plotted in Figure 8 as arranged in the

ascending order of the accuracy. As we can observe, the finger
motions do incur some interferences to the detection accuracy,
but the overall performance is still high, with an average of
95%.

In addition, we have also tested the accuracy when the
whole body is in motion. In this case, the subject swings
the body back and forth slightly every 10 seconds and 10
experiments are implemented. Those actions would result in
a series of non-periodic signals to the measurement. Figure 9
shows the average accuracy for the body movements of 96%.

3) Antenna Pairs: It is of utmost interest to see the accuracy
performance for a different number of antenna pairs. All the
antennas are evenly distributed on the front board. The layout
of the four antennas is arranged as a square with antennas
fixed at the four corners [18]. Totally three combinations of
transmitting and receiving antennas are used. Four antennas
are numbered as 1, 17, 4 and 18. Three antenna pairs chosen
from the combinations are 1→17, 17→4, and 4→18.

Three pairs of antennas capture the reflections simulta-
neously for 30 seconds in each experiment, and totally 10
experiments are performed. To show the advantages in dealing
with noises, the tests are performed with the noises of finger
movements for totally 2 seconds in each test.

In order to eliminate the influence of the antenna layouts
and for fairness, three accuracies from three individual antenna
pairs are averaged to get the final average accuracy for the one
pair of the antenna case. Similarly, the average performance is
evaluated for the two pairs of antennas, and there is only one
accuracy for utilizing all three antenna pairs simultaneously.

The performance data for the combinations of antenna pairs
are presented in Table I. As the data shows, the accuracy is
higher when using more than one antenna pair. In the case
of one pair, the worst accuracy among the antenna pairs is
only 91.7% with the average accuracy of all pairs as 94.4%.
As more antenna pairs are exploited, the average performance
is improved. When all three pairs are used, the accuracy is
increased to 98.2%. It indicates the MIMO approach to the
detection has various advantages.

4) Correction with Superposition: This experiment is de-
signed to verify the effectiveness in addressing exceptions by
superposing FFT magnitudes of the measurements at various
indices from multiple antenna pairs as in Section III-F1 and



TABLE I
ACCURACY VERSUS COMBINATION OF ANTENNAS

Combination

Number 1→17 17→4 4→18 All Average

1 98.6% 92.9% 91.7% ∅ 94.4%

Combination

Number 1→17&17→4 17→4&4→18 1→17&4→18 All Average
2 98.4% 98.0% 94.4% ∅ 96.9%
3 ∅ ∅ ∅ 98.2% 98.2%

Fig. 10. The accuracies with and without the superposition. The sets
without superposition simply take the average heart rates detected on different
sequences.

Figure 4. The experiment uses three pairs of antennas, and
each pair contributes five measurement sequences (at five
indices) with 15 heart rates generated in each window. Its per-
formance is compared with the case without the superposition
correction that only takes the average values of 15 heart rates.

The results are shown in Figure 10. Overall accuracy with
superposition overpasses that without it, where the average
accuracy with superposition is 98% while that of those without
superposition is about 90%. Especially in the 6-th bin, the
accuracy is improved by 20%. A conclusion can be drawn
that the superposition can mostly improve the accuracy of
detection.

V. CONCLUSION

In this paper, we propose a solution to the non-contact
non-invasive heart and respiration rates monitoring, by us-
ing an MIMO FMCW radar, capturing the amplitudes of
the reflections from subjects. With very high resolution of
measurements (4 KHz) in each PRI, heart and respiration
rates can be extracted from the compound motions of the
heart and chest. The use of multiple antennas complements
detection defects and unexpected interferences. Furthermore,
the superposition of multiple detection indices within each PRI
improves the accuracy more. With extensive experiments in
the real world, the proposed system shows strong reliability
and high accuracy in detecting both heart and respiration rates
simultaneously.
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