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Abstract

Voice deepfake attacks, which artificially impersonate human speech
for malicious purposes, have emerged as a severe threat. Existing
defenses typically inject noise into human speech to compromise
voice encoders in speech synthesis models. However, these methods
degrade audio quality and require prior knowledge of the attack ap-
proaches, limiting their effectiveness is diverse scenarios. Moreover,
real-time audios, such as speech in virtual meetings and voice mes-
sages, are still exposed to voice deepfake threats. To overcome these
limitations, we propose CLEARMASK, a noise-free defense mecha-
nism against voice deepfake attacks. Unlike traditional approaches,
CLEARMASK modifies the audio mel-spectrogram by selectively
filtering certain frequencies, inducing a transferable voice feature
loss without injecting noise. We then apply audio style transfer to
further deceive voice decoders while preserving perceived sound
quality. Finally, optimized reverberation is introduced to disrupt
the output of voice generation models without affecting the natu-
ralness of the speech. Additionally, we develop CLEARMASK, named
L1vEMASK, to protect streaming speech in real-time through univer-
sal frequency filter and reverberation generator. Our experimental
results show that CLEARMAsK and LivEMask effectively prevent
voice deepfake attacks from deceiving speaker verification models
and human listeners, even for unseen voice synthesis models and
black-box API services. Furthermore, CLEARMASK demonstrates
resilience against adaptive attackers who attempt to recover the
original audio signal from the protected speech samples.
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1 Introduction

With the rapid advancement of deep learning, voice synthesis mod-
els have become increasingly powerful, producing speech sounds
highly natural and lifelike [3, 5]. Building on it, state-of-the-art
voice synthesis models can create convincing speech content us-
ing a short speech sample as a reference, replicating not only the
speaker’s voice but also their prosody and rhythm to make the
output indistinguishable from real human speech [48]. However,
these advancements also lead to threats when generated speech is
misused, known as voice deepfake attacks [50]. In 2023, fraudsters
successfully bypassed bank authentication systems using synthetic
voices [4], and even orchestrated a fake kidnapping by synthesizing
a girl’s voice [6]. In another instance, criminals deceived a company
into transferring $200,000 using fake speech [2]. Some individuals
have exploited this technology to generate hate speech using the
voices of celebrities, causing significant reputational harm [53].
Additionally, synthetic voices can be used to compromise voice
assistants during user verification processes or to execute malicious
voice commands [49]. These examples underscore the risks of syn-
thetic speech being used to deceive humans or automatic speaker
verification (ASV) systems. Unfortunately, preventing the misuse
of synthetic speech by restricting speech synthesis models remains
a substantial challenge. As a result, exposing unprotected voices on
public media platforms raises serious threats to user security and
privacy.

One common defense against artificially generated speech is live-
ness detection [10], which identifies unnatural speech not originate
from human vocal tracts. However, this approach is limited as it can-
not prevent attacks designed to deceive human listeners. To address
the limitation, Attack-VC [24] mitigates voice deepfake attacks by
masking speech audio before it is uploaded to public social media
platforms. By injecting carefully optimized perturbations into audio
signals, Attack-VC prevents attackers from generating convincing
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Table 1: Comparison of CLEARMAsK with existing defenses.

Effective- | Trans- High- Real-

Defenses 1 . .
ness ferability | quality | time
Attack-VC [24] Medium Low Low Low

SampleMask [32] Low Medium | Medium | High
VSMask [46] High Low Low High
AntiFake [52] High High Medium | Low
CLEARMASK High High High | High

speech samples capable of deceiving ASV systems or human lis-
teners. Despite its effectiveness in specific scenarios, achieving a
comprehensive defense in diverse real-world applications remains
challenging. These challenges can be categorized into four key as-
pects. First, achieving a high success rate is critical for all defense
mechanisms. Even a small chance of successful attacks can com-
promise the defense, leading to severe and unacceptable damages.
Second, defenders often lack prior knowledge about the specific
voice synthesis models that attackers employ. Therefore, existing
white-box defenses cannot be generalized to protect against vari-
ous voice synthesis models. Third, the protected speech audio must
retain clarity and intelligibility to ensure its usability in practical
applications, such as videos or voice messages. Fourth, safeguard-
ing real-time speech audio in instant communication applications,
e.g., FaceTime [1] and online meetings, is essential. These scenarios,
however, require protection mechanisms to function with minimal
latency, which presents a technical challenge.

Consequently, we identify four essential features for effective
protection against voice deepfake attacks: effectiveness, transferabil-
ity, high-quality, and real-time, corresponding to the four challenges
outlined above. In Table 1, we evaluate existing defenses across
these dimensions. However, while individual defenses demonstrate
unique strengths, none of them satisfy all four requirements. Attack-
VC [24] and VSMask [46] are white-box defenses with limited trans-
ferability. SampleMask [32] requires querying a specific model, and
demonstrates limited effectiveness. While AntiFake [52] exhibits
strong effectiveness and transferability, it suffers from poor audio
quality and lacks real-time feasibility. To overcome these challenges,
we propose CLEARMASK, a noise-free defense against voice deep-
fake attacks. While ensuring effectiveness, we adopt an ensemble
encoder approach to enhance the transferability. Moreover, un-
like traditional methods which inject noise to mask voice samples,
CLEARMASK leverages multiple natural sound effects to generate
high-quality speech. Specifically, it first modifies the input mel-
spectrogram of voice synthesis models by filtering out specific
frequencies in speech spectrograms. Next, CLEARMASK employs
audio style transfer to obscure distinctive voice features, effectively
misleading deepfake voice generation. Finally, it introduces a well-
optimized room impulse response (RIR) to create unique reverber-
ation effects that further enhance the protection. In addition, we
design LIVEMASK, a real-time mode of CLEARMASK designed for
online speech protection. LIvEMask employs universal frequency
filter and reverberation sound effect to provide immediate protec-
tion for instant communication scenarios.

In the evaluation, we test CLEARMAsK and LIvEMask on both
open-source and commercial voice synthesis platforms. The results
demonstrate that CLEARMAsK and LivEMAsk effectively prevent
unauthorized voice synthesis in both offline and online scenar-
ios. With this protection, the generated deepfake voices fail to
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Figure 1: A general framework of voice synthesis models.
deceive ASV systems or human listeners. Furthermore, CLEARMASK
demonstrates robustness against adaptive attackers with varying
capabilities who attempt to remove the reverberation, effectively
maintaining its defensive performance. Overall, our contributions
are summarized as follows:

e We introduce CLEARMASK, a noise-free protection mecha-
nism against malicious voice cloning. CLEARMASK employs
spectrogram masking to modify the mel-spectrogram. In
addition, we utilize audio style transfer and artificial rever-
beration to further obscure distinctive voice features.

e We propose LIVEMASK, a real-time mode of CLEARMAsK
designed for immediate protection. It applies a general fre-
quency filter and universal reverberation generation to pro-
tect streaming online speech with millisecond-level latency.

e We provide a comprehensive system design to optimize the
three stages of CLEARMAsK. Through a surrogate ensemble
encoder, we strike a balance among effectiveness, transfer-
ability and audio quality.

e We comprehensively evaluate the protection performance of
CLEARMASK and L1vEMAsK on five voice synthesis models
including commercial APIs. Our results demonstrate that
CLEARMASK achieves effective, transferable, high-quality,
and real-time protection in various scenarios.

2 Preliminaries
2.1 Voice Deepfake Attacks and Defenses

Voice synthesis models produce artificial speech by integrating
linguistic content derived from source speech or textual input with
voice features extracted from a reference speech sample. Voice syn-
thesis approaches are typically categorized into Voice Conversion
(VC), which modifies the voice of a given speech sample to mimic
a target speaker [18, 19, 38], and Text-to-Speech (TTS), which gen-
erates speech from text using the target speaker’s voice [13]. Fig. 1
illustrates a general framework of voice synthesis, where content
and voice features are encoded into embeddings, decoded to pro-
duce a mel-spectrogram, and converted into audible waveforms. VC
usually creates more expressive results by retaining human emo-
tion and intonation, while advanced TTS models also achieve high
realism with style embedding [48]. To prevent unauthorized voice
synthesis, users can employ adversarial examples to compromise
the voice encoder module E;, leading to unqualified synthetic voice
samples. The optimization process of this adversarial speech is:

argmax [|Eo(xr +06) = Eo(xr)llz - st 10l <& (1)

where x, is the victim’s speech sample and § is perturbation sig-
nal. However, this approach heavily depends on gradient back-
propagation from a single encoder model, which limits its trans-
ferability in black-box scenarios. Additionally, the perturbations §
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degrade the audio quality of the adversarial speech samples. There-
fore, more advanced methods are needed to effectively protect
speech against various attack techniques while preserving audio
quality and naturalness.

2.2 Audio Style Transfer

Inspired by image style transfer [21], audio style transfer has emerged
with the goal of modifying the texture of sound, such as the timbre
of a musical instrument [22, 42]. Both audio style transfer and voice
conversion focus on embedding features of one audio sample into
another to synthesize a new audio. An audio style transfer model
generally includes a style extraction module E¢ and a style synthesis
module S, and can be mathematically represented as follows:

x; =8(x, V), s.t. Vs = Eg(y,), @

where x; is the source audio and vy, is the style reference audio.
Although audio style transfer does not affect the speech content
features, the difference in sound texture could mislead the voice
encoder in voice synthesis models and damage the extracted voice
embedding vectors.

2.3 Reverberation in Adversarial Examples

Reverberation is a phenomenon caused by multi-path effects in
the physical world. The reverberation can be quantified using RIR,
defined as the response signal after a pulse is played in a given
environment. We can simulate reverberation by convolving an RIR
with an original audio x;:

xf =xyxh, 3)

where h is the reversed RIR signal, and xlt2 is the audio with rever-
beration effect.

While reverberation in common environments is often too subtle
to affect human perception, it plays a critical role in adversarial
audio attacks in the physical world. For instance, when attackers
replay adversarial audio examples to compromise speech recogni-
tion models, the typically weak perturbations can result in attack
failure due to reverberation distortion. To address this challenge,
attackers must measure the RIR at the precise locations of the ad-
versarial audio transmitter and victim microphone, then apply the
RIR filter to the original speech to ensure the target device receives
the intended perturbation [16, 41].

3 Threat Model

Current state-of-the-art voice cloning models are capable of synthe-
sizing high-quality speech using just a few seconds speech sample
as a reference, making it particularly challenging to effectively de-
fend against such attacks. In this section, we define the threat model
of voice deepfake attacks, elaborating on the attacker’s knowledge
and methods for acquiring reference voice samples, as well as the de-
fender’s capabilities of mitigating potential voice deepfake threats.

3.1 Adversary Capability

Approaches: As illustrated in Fig. 2(a), people commonly expose
their voices in two scenarios. On one hand, offline speech, such
as videos shared on public social media platforms like Instagram,
TikTok, and YouTube, can be exploited by attackers who download
these videos and use the speech to impersonate the user’s identity.
On the other hand, online speech from real-time applications, such
as online meetings and phone calls, also puts the user’s voice at risk.
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Figure 2: Compared with raw speech, CLEARMASK protected
speech is robust against voice deepfake attacks.

Protecting speech in online scenarios is particularly challenging, as
users lack sufficient time to optimize the masking of these speech
samples. Once an attacker successfully clones a victim’s voice, the
synthesized speech can be used to control voice assistants or deceive
human listeners, leading to potentially severe consequences such
as financial losses or physical threats [47].

Knowledge: Adversaries are capable of synthesizing deepfake
speech by leveraging readily available open-source speech synthe-
sis models or commercial APIs. Reference speech can be obtained
from public social platforms or recorded from live-streaming au-
dio. Moreover, attackers may possess private information about
victims, such as their names and contact details, enabling them to
execute more sophisticated attacks, including spam phone calls.
Additionally, if attackers become aware that speech samples have
been protected, they may attempt to bypass the protective measures
and recover the raw speech. Alternatively, they could synthesize
the victim’s voice using various models and select the one with
highest performance.

3.2 Defender Capability

Approaches: Fig. 2(b) illustrates the application scenarios of CLEAR-
Mask. For offline speech, defenders can utilize CLEARMASK, which
leverages noise-free sound effects to safeguard speech prior to up-
loading it onto public social media platforms. In online scenarios,
defenders can activate LIVEMASK, the real-time mode of CLEAR-
Mask to enable fast protection. With CLEARMASK protection, nei-
ther ASV models nor human listeners can identify the synthetic
voice as belonging to the victim, thereby rendering voice deepfake
attacks ineffective.

Knowledge: In this work, we consider CLEARMASK a black-box
defense, meaning that defenders have no prior knowledge about the
adversaries. Specifically, the model being used, including its archi-
tecture, weights, and training data, remains unknown. Furthermore,
they are prohibited from querying black-box models. During the
defense stage, defenders employing CLEARMASK can utilize public
speech and RIR datasets to enhance protection performance. More-
over, they have unrestricted access to open-source voice synthesis
models and their well-trained checkpoints, allowing them to build
a surrogate model for the transferable defense.
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Figure 3: System overview of CLEARMASK. It first applies spectrogram masking to modify the mel-spectrogram. Next, an
ensemble voice encoder is leveraged to optimize audio style transfer and reverberation generation stages, improving the defense

effectiveness and transferability.

4 Methodology

To address the technical challenges in existing defense approaches,
including transferability, audio quality, and real-time feasibility,
we design CLEARMASK, a novel speech protection method to pre-
vent malicious voice synthesis. The framework of CLEARMASK is
illustrated in Fig. 3. Instead of adding noise to the original speech,
CLEARMASK implements three techniques to mask the real voice
features: spectrogram masking, audio style transfer, and reverbera-
tion generation. These noise-free methods allow us to reduce audio
distortion and maintain naturalness for human perception.

4.1 Spectrogram Masking

The high sampling rate of digital audio complicates direct time-
domain audio signal processing. As a result, speech synthesis mod-
els utilize spectrograms as the input. Typically, audio waveforms
are converted into spectrograms using Short-Time Fourier Trans-
form (STFT), which are then mapped to the mel scale—a perceptual
scale that aligns with human auditory sensitivity by emphasizing
lower frequencies. During speech generation, the decoder outputs
a mel spectrogram, which is converted into an audible waveform
by vocoders such as HiFiGAN [30].

Therefore, we propose masking the input mel-spectrogram of
voice synthesis models to influence the output of the voice encoder
E,. Existing work [32] has demonstrated that masking certain fre-
quencies in the spectrogram can mislead the voice feature extraction
process in speech synthesis, resulting in degraded synthetic speech
while preserving overall audio quality. However, this straightfor-
ward approach is not consistently effective across diverse speech
samples. Unlike methods that mask wide frequency bands, CLEAR-
Mask sets only a few selected frequencies to zero to minimize audio
quality degradation. Furthermore, to reduce computational com-
plexity, we first identify the frequencies with substantial power
(= 7p), as audio spectrograms are inherently sparse matrices. Next,
we apply a greedy algorithm to select the frequencies to be masked,
as detailed in Algorithm 1.

The greedy frequency selection method first ranks the frequen-
cies based on the mel-spectrogram loss ||[Mel(X) — Mel(Xtemp) |2,
where Xyemp represents the spectrogram after removing a specific
frequency component X;. Next, we filter out only k frequencies with
the strongest impact on the input mel-spectrogram, striking a bal-
ance between audio quality and protection performance. Notably,
since the mel-spectrogram deviation serves as the loss function and
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Algorithm 1 Greedy Frequency Selection

. Input: Spectrogram X = [Xo, X1, ..., Xp]T
: for X; € X do
if [|Xjll2 > 7p then
Xtemp < X with X; set to 0
Ai — |[Mel(X) — Mel(Xtemp)||,
end if
end for
: 8§ « indices of the top k values of A;
X" « X with Xjc g setto 0
: return X’

b U o T

_
(=3

does not depend on gradient back-propagation from any specific
voice encoder model, this approach achieves transferable perfor-
mance across diverse models.

4.2 Audio Style Transfer

While masking certain frequencies can protect voice features with-
out noticeably degrading audio quality, voice patterns can still be
extracted. Therefore, additional methods are necessary to improve
the effectiveness of protection. Audio style transfer, which modifies
sound texture without introducing noise, is another key technique
that can be utilized to spoof voice synthesis models. However, opti-
mizing the audio style of input speech samples to achieve effective
defense is challenging. Directly using another speaker’s speech
as y, to process the original speech is not feasible, as explained
in Appendix A. In this section, we will illustrate the audio style
optimization strategy for CLEARMASK protection.

4.2.1 Ensemble Encoders. Existing defense methods that employ
adversarial examples to attack voice synthesis models usually rely
on gradient back-propagation. However, due to overfitting, the
transferability of defenses is limited when the gradient from a
single encoder is used to optimize the adversarial example. If the
defense assumes only white-box scenarios, its effectiveness can-
not be guaranteed when attackers employ alternative models to
synthesize speech. Therefore, it is crucial to ensure that protected
speech examples remain effective across models with varying ar-
chitectures.

Fortunately, although different voice encoders are employed, var-
ious voice synthesis models share the common goal of extracting
the unique vocal patterns of a single speaker from speech samples
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with diverse content. Regardless of differences in model architec-
tures, all voice encoder modules extract the same voice features,
even though they are represented differently. Based on this prior
knowledge, it is possible to design a transferable protection method
that remains effective across different voice synthesis models. How-
ever, variations in training data and model architectures inevitably
result in different gradient values. To achieve optimal performance
across diverse models, CLEARMASK incorporates encoders with
varying architectures and optimizes the loss function as follows:

Lop M x0) = 3T LIEL (M) = By (e l2, @
i=0

where E;, is the i-th encoder, and xtM is the masked speech sam-
ple generated by CLEARMAsK. Additionally, as the dimensions of
the voice embedding vectors are different, we use A; to adjust the
weight of each encoder. This loss function based on the ensemble
encoder can significantly enhance protection transferability since
the optimization is guided by gradients from a diverse collection of
voice encoders.

4.2.2 Style Optimization. By leveraging the surrogate ensemble
encoder, we can optimize the target audio style to modify the input
speech and compromise different voice synthesis models. In CLEAR-
Mask, we apply DeepAFx-ST [42] as the audio style transfer tool.
However, the challenge in the optimization process is that audio
style transfer functions serve as a black box for voice encoder mod-
els, meaning that we cannot directly derive gradients to optimize
the style embeddings. To address the challenge, we need to query
the surrogate model and find the optimal target audio style for the
input speech.

Moreover, in audio style transfer process, the style embedding
vector V is normalized to have a fixed I, norm. Therefore, we can
only flip each dimension without changing the value. We set the
input of audio style transfer to be the unprocessed speech x;, and
its style embedding vector V = Es(xj), along with the filtered
speech xl./:(, We use a sensitivity score to measure the efficiency of
flipping each dimension in V:

-Espk (Xouts Xin) — -Espk (xi/>14’ Xin)
”Xin - Xout”Z

where X;, and X,y are spectrograms of x;, and xpy. Algorithm 2

presents the audio style optimization process.

First, we attempt to flip each dimension in V and record the
sensitivity, which is the ratio of the extra voice embedding loss
to the audio quality loss caused by style transfer. Next, we flip
these dimensions according to the sensitivity score from high to
low. Meanwhile, we set an audio distortion threshold 7. Once the
audio quality loss is beyond this threshold, we will quit the loop to
ensure the audio distortion is acceptable with x¢y; = S (xi/:‘, Vout)-
Although sounds similar, x4,; causes completely different voice
embedding vector from the raw speech x;p,.

)

Sen(xoubxi/,\;(, Xin) =

4.3 Reverberation Generation

4.3.1  RIR Selection. In the final step, we enhance the protection
effectiveness by adding additional reverberation to the protected
speech. As mentioned in Section 2.3, reverberation is generated by
convolving a reversed RIR with the raw audio signal. The selection
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Algorithm 2 Style Embedding Optimization

1: Input: style vector V = [vg, v1, . ..,0p], xin and xi/:(

2: for each v; € Vdo

3: Vtemp «— V with v; = —v;

Xout = S(xi/,\l/(, Vtemp)

Score[i] = Sen(xou;,xl/:l’(,xm)

: end for

: Sort Score[i] in descending order

. for each i in sorted Score[i] do
while || X, — Xout|l2 < 7 do

Vour < V with v; = —v;

end while

end for

kol

© ® N !

10:

12:

of an appropriate RIR is guided by two main factors. On one hand,
RIR signals are typically characterized as damped oscillatory sig-
nals with a rapid initial decay. To maintain the naturalness of the
processed audio, the reverberation follows this characteristic. On
the other hand, while reverberation is ubiquitous in physical envi-
ronments, excessive reverberation can still degrade audio quality.
Therefore, we must impose constraints on RIR seeds for reverbera-
tion generation.

First, the length of the RIR seed determines the perceptibility
of the reverberation. Typically, when the sound reflection delay is
shorter than 30 ms, the reflected sound is mixed with the original
sound [23] so that it is imperceptible. When the delay is longer,
human ears identify the reflected sound as an echo, causing a signif-
icant difference in human perception. Therefore, CLEARMASK con-
strains all RIR seeds length within 30 ms to guarantee audio clarity.
Second, to ensure naturalness, we collect RIR seeds from reverbera-
tion audios recorded in various real-world environments [43]. We
normalize all RIR samples and initialize the RIR seeds by clipping
only the initial part of the RIR signal with relatively strong power.
Next, we attempt to select the RIR with the strongest protection
performance, h*, to maximize the loss of voice embedding vector,
as shown in Eq. (4):

h* =arg hggg}R [Lspk (Xout * b, xin) — A1 - len(h)], (6)
where h represents the reversed RIR signals in the dataset SRR,

Meanwhile, we attempt to shorten the RIR length by incorporating a
penalty term, —A; - len(h), to punish excessively long reverberation
in the protected speech audio.

4.3.2  Reverberation Optimization. Natural reverberation alone may
not always provide sufficient protection against malicious voice
synthesis. Therefore, the natural RIR seeds require further opti-
mization to achieve the highest protection performance. At this
stage, the loss applied for optimization is different. The previous
goal of CLEARMASK optimization stages is to maximize the loss
between the real voice embedding and the protected voice embed-
ding. However, continuously increasing the loss value does not
always lead to better protection. When the loss exceeds a certain
threshold, the synthesized speech becomes noisy rather than merely
altering the vocal features. This effect may alert adversaries to the
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presence of protective measures. Our solution is to select a "tar-
get speaker” with a completely different voice from the protected
speaker to effectively mislead the voice encoder. AntiFake [52] ap-
plies a human-in-the-loop method, which asks human operators
to select speech samples that are most dissimilar to the protected
voice to constrain the voice embedding loss. However, this method
is labor-intensive, particularly in scenarios requiring large-scale
protection. Our approach addresses this limitation by employing a
speaker recognition model to extract voice features and automati-
cally select samples that are most dissimilar to the protected voice.
After it, the maximization problem is converted to a minimization
problem. The optimization can then be formulated as:

main [Lspk (x'9", xXour * (h* +8)) = 1 - -Espk (Xin, Xout * (B* +9))]

s.t. |9l <6,

™)

where x?9! represents the speech sample from the target speaker,
and A adjusts the weight of loss values. Additionally, by introducing
€, we can constrain the RIR amplitude and mitigate the interference
caused by reverberation.

In addition, we optimize the projected gradient descent (PGD)
method to enhance protection transferability. We notice that, at the
beginning of PGD, the adversarial examples show good transfer-
ability across different models. However, as the PGD optimization
continues, transferability tends to degrade. After running PGD for
multiple iterations, for L, in Eq. (4), the loss values of some en-
coders continue to decrease, while the loss values from other voice
encoders remain unchanged or even increase. To avoid this trans-
ferability loss, we implement a new strategy: for each individual
voice encoder in the ensemble, if its voice embedding loss does
not decrease over k. consecutive iterations, we stop the iteration.
This prevents the optimization process from overly focusing on
a single model, which reduces overall protection transferability.
Furthermore, because our approach incorporates three different
stages and a surrogate model composed of multiple encoders, it ef-
fectively enhances protection robustness. No voice synthesis model
can withstand all of the protective methods or encoders.

4.4 LiveMask Design

While we can effectively protect offline speech , online streaming
speech, such as online meetings or voice messages, is still vulnerable.
Compared to offline protection, online protection requires minimal
latency, making step-by-step optimizations infeasible. To address
this challenge, we propose a fast protection model of CLEARMASK,
named LIVEMASK, to extend its feasibility for online applications.
In online protection, we skip audio style transfer because it requires
the entire speech sample before processing. In contrast, spectro-
gram masking and reverberation can be rapidly applied to real-time
audio signals, enabling fast protection.

Prior to the optimization, we prepare a dataset D = {xg, x1, ..., Xp },
which contains 150 seconds speech samples from a single user, cov-
ering common English phonemes. In the first step, we optimize a
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Table 2: Voice synthesis models in CLEARMASK.

Voice Synthesis Encoder Embedding

Models Architecture | Dimension
Surrogate |ANVC [19] VAE 128
models AutoVC [38] VAE 256
SV2TTS [45] LSTM 256
YourTTS [13] ResNet 512
Test Diff VC [36] VAE 256
nodels | AGAIN-VC 18] U-Net N/A
ElevenLabs [3] N/A N/A
Play.ht [5] N/A N/A

general frequency mask M, using the following objective:
n
arg max IMel[Mg(x;)] — Mel(x;)l2, (8)
My &

i=!

where Mg is a filter that masks k fixed frequencies fy, f1, ..., fk—1 to
maximize the mel-spectrogram loss across all samples in D. This
mechanism pre-configures the filtered frequencies for the speaker.
In this way, when the microphone captures the streaming speech,
the frequency filter can be applied in real-time without introducing
additional latency.

Moreover, we design an optimization process for a universal RIR
seed hy to generate reverberation in the speech. Similar to the RIR
optimization in CLEARMASK, this universal RIR seed hy is designed
to minimize Ly across all samples in D. The optimization process
is formulated as:

n
arg Iréin Z[Lspk (xtgt)x; * (h+dg)) - .Espk(x,-,xl{ * (h+dg))]
9 i=0

st |16l < € and hy = h+3,,

©)

where x] represents the speech samples after universal frequency
masking M. It is notable that finding the optimal solution for
LivEMASK is more critical, as the universal RIR seed should indis-
criminately protect ambient speech containing different contents
from the given speaker. To achieve this, we decrease the learning
rate and increase the number of iterations to ensure the model finds
a solution with better generalized performance. Once the univer-
sal RIR seed is determined, the reverberation can be immediately
applied to streaming speech signals via convolution. Finally, the
latency corresponds to the length of the RIR, which is typically tens
of milliseconds. Also, as we bypass the optimization process for in-
dividual speech samples, the masked universal filtered frequencies
k and the 6, constraint € in LIvEMASK are less strict compared to
the offline mode of CLEARMASK.

5 Evaluation

5.1 Experiment Setup

5.1.1 Speech Datasets. We use two datasets for evaluation: one
is VCTK-Corpus [44], an English dataset that contains 107 speak-
ers with different accents. Meanwhile, since most voice synthesis
models are originally trained on this dataset, which may introduce
bias into the results, we also use LibriSpeech [34], another English
speech dataset with longer speech samples. We randomly select 50
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speakers from each dataset (100 speakers in total) and test the 20
longest speech samples from each speaker.

5.1.2  Speech Contents. We use ChatGPT 4.0 [7] to generate 20
textual inputs that could potentially be used in voice deepfake
attacks for TTS-based synthesis. For VC-based synthesis methods,
we use Google Text-to-Speech [8] to generate speech from these
text inputs as the source speech. Some textual input samples are
included in Appendix B.

5.1.3  Voice Synthesis Models. We employ multiple voice synthesis
models for both the training and testing stages. For surrogate mod-
els, we utilize AdaIN-VC [19], AutoVC [38], and SV2TTS [45], which
are based on Variational Autoencoder (VAE) and Long Short-Term
Memory (LSTM). We use 3 different open-source voice synthesis
models for testing. YourTTS [13] is a TTS model with a ResNet-
based voice encoder. Diff VC [36] is a voice conversion model us-
ing diffusion model to generate speech mel-spectrogram. AGAIN-
VC [18] is a voice conversion model using U-Net architecture to
extract the content along with voice embedding vectors. The details
of these models are summarized in Table 2, where N/A indicates
parameters that are either unknown or not applicable. Although the
basic architectures of these models are similar, their detailed param-
eters, such as the number of layers and weights, differ significantly,
requiring CLEARMASK protection to achieve effective transferability.
Additionally, we test CLEARMAsK performance on two commercial
voice synthesis APIs: ElevenLabs [3] and Play.ht [5]. These com-
mercial APIs operate as pure black boxes, meaning we have no
knowledge about their model architectures or weights.

5.1.4 Hyperparameters. We resample all speech audio sampling
rate to 48 kHz in the pre-processing stage. In spectrogram masking,
we use STFT to transfer the audio waveform to a spectrogram with
1025 frequency bins mask k=12 frequencies.

5.1.5 Evaluation Metrics. We use three different metrics to com-
prehensively evaluate CLEARMASK performance on ASV:
Similarity Score: SpeechBrain [40] is an open-source speech toolkit
built on PyTorch [35]. Its speaker verification function is built on
the state-of-the-art ECAPA-TDNN [20] model. The similarity score
is calculated using the cosine similarity between the reference voice
embedding and the inference voice embedding vectors.
ECAPA-TDNN Rejection Rate (ETRR): The ECAPA-TDNN model
provides a speaker verification decision based on the similarity
score. If the similarity score falls below a certain threshold (default
= 0.25), the voice is rejected by ASV.

Soniox Rejection Rate (SRR): We also evaluate CLEARMASK per-
formance using Soniox [9], a speaker identification service API. We
first enroll the original speech samples as the reference and then
upload the synthesized speech. If the synthesized voice is identi-
fied as an "unknown speaker,’ we consider CLEARMASK to have
successfully prevented the voice deepfake attack.

5.2 CrEARMaAsK Effectiveness on Open-source
Voice Synthesis Models

First, we evaluate the performance of CLEARMASK on unseen voice
synthesis models. To test the synthesis capabilities of the models,
we use unprotected speech samples as reference inputs for open-
source voice synthesis models and evaluate the similarity between
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the synthesized and original voices using the ECAPA-TDNN model.
The results are listed in the first row of Table 3. Although the synthe-
sis performance varies across different models, most synthetic voice
samples are successfully verified by the ECAPA-TDNN speaker ver-
ification system across all models. This demonstrates that sharing
unprotected speech online can easily compromise ASV systems.

Next, we conduct an ablation study by comparing each step
in CLEARMaAsK individually and in different combinations. When
we apply only the spectrogram masking method, the similarity
between the synthesized voice samples and the unprotected syn-
thesized voices significantly decreases across all models, indicating
good transferability of this approach. However, despite the reduc-
tion in similarity, many synthesized voice samples can still pass
speaker verification as voice features still remain in the residual
frequencies. Moreover, further increasing the number of masked
frequencies would result in a substantial decline in audio quality.
Therefore, simply relying on this method is insufficient to compre-
hensively protect human speech against voice synthesis. In addition,
we evaluate the protective performance of the audio style transfer
and reverberation generation methods. Compared to spectrogram
masking, these two methods are optimized based on the loss pro-
vided by the surrogate ensemble encoders. In our experiments,
both methods demonstrate high protective effectiveness. Despite
significant differences in structure and parameters across different
models, the aggregate encoder approach we use has a noticeable
impact on all models. After applying audio style transfer, most
synthesized voice samples can no longer bypass speaker verifica-
tion. Similarly, the reverberation generation method successfully
protects over 80% of the speech samples. However, when used indi-
vidually, these methods can still be compromised by attackers by
repeated attempts.

For comparison, we run experiments with different combinations
of these three methods. As shown in Table 3, the protective effec-
tiveness for unseen models significantly increases when multiple
methods are applied. When two of the methods are used in combi-
nation, at least 94% of the voice samples are successfully protected.
When all three methods are combined, nearly all samples are suc-
cessfully protected across all potential attack models. Considering
that the ECAPA-TDNN model has an error rate of approximately
1%, CLEARMASK remains effective even if the rejection rate is not
always 100%!.

Meanwhile, we evaluate the effectiveness of CLEARMASK on So-
niox, a commercial speaker recognition API. Generally, commercial
ASV models have more complex architectures, leading to better
robustness than open-source models. Since commercial APIs will be
used in real-world application scenarios to process diverse speech
data, the ASV model must ensure the lowest possible false accep-
tance rate (FAR), which means that it has a higher threshold to reject
deepfake or similar voice samples. Even generated from unprotected
samples, a lot of synthetic voices fail to pass the commercial ASV
models. When we apply different protection combinations, most
methods successfully achieve a 100% protection success rate. There-
fore, CLEARMAsK demonstrates strong effectiveness in preventing
all synthetic speech samples from passing commercial ASV models.

! Audio demos are available at: https://clear-mask.github.io/.
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Table 3: CLEARMASK performance on unseen open-source voice synthesis models.

Defenses YourTTS DiffvC AGAIN-VC
Score | ETRRT | SRRT Score | ETRRT | SRRT Score | ETRRT | SRRT
N/A 0.577+0.19 4.2% 26.4% 0.532+0.22 6.6% 29.0% 0.366+0.16 11.3% 44.0%
@) 0.202+0.09 75.6% 91.2% 0.209+0.09 71.3% 90.0% 0.177+0.07 84.0% 96.5%
) 0.226+0.12 68.0% 90.5% 0.211+0.10 70.6% 92.9% 0.189+0.11 82.2% 97.0%
Ablation ©)] 0.187+0.08 83.5% 94.5% 0.188+0.11 88.4% 96.9% 0.158+0.13 95.0% 99.1%
Study @+@ 0.176+0.09 94.2% 100% 0.164+0.08 95.3% 100% 0.120+0.06 100% 100%
®+@ 0.159+0.07 98.4% 100% 0.147+0.06 98.0% 100% 0.109+0.06 100% 100%
@+ 0.163+0.07 96.5% 100% 0.152+0.07 98.8% 100% 0.114+0.05 100% 100%
D+@+® 0.125+0.05 99.8% 100% 0.112+0.04 99.9% 100% 0.091+0.04 100% 100%
Existing Attack-VC [24] 0.233+0.18 64.2% 78.0% 0.227+0.17 76.3% 84.1% 0.194+0.12 82.5% 93.9%
Defenses SampleMask [32] 0.286+0.22 46.6% 58.4% 0.266+0.20 53.2% 69.0% 0.210+0.16 70.5% 86.8%
AntiFake [52] 0.138+0.06 99.8% 100% | 0.107+0.04 100% 100% | 0.085+0.04 100% 100%
© Spectrogram Masking @ Audio Style Transfer @ Reverberation Generation
Table 4: LivEMASsK performance on unseen open-source voice synthesis models.
Defenses YourTTS DiffvC AGAIN-VC

Score | ETRRT | SRRT Score | ETRRT | SRRT Score | ETRRT | SRRT

[ 0.211+0.16 70.2% 88.5% 0.221+0.18 62.6% 80.4% 0.188+0.13 79.4% 91.7%

@ 0.182+0.12 83.5% 94.4% | 0.169+ 0.12 89.4% 97.5% 0.155+0.10 93.6% 100%

®+@ 0.154+0.08 99.7% 100% | 0.145+0.07 99.9% 100% | 0.126+0.05 100% 100%

VSMask [46] 0.226+0.17 70.8% 84.6% 0.239+0.20 66.0% 79.5% 0.181+0.14 85.8% 95.2%

@ Universal Spectrogram Masking @ Universal Reverberation Generation

In addition, we compare the performance of CLEARMASK with
other baseline offline defense methods, including Attack-VC, Sam-
pleMask, and AntiFake. For Attack-VC and SampleMask, we adopt
the white-box defense setup. We choose the samples with the best
transferability performance across multiple target voice synthesis
models. As shown in Table 3, when Attack-VC and SampleMask are
applied to defend against unseen voice synthesis models, they fail
to achieve effective results due to their inability to handle varying
model structures and parameters. After applying these defenses,
the synthesized voices still exhibit high similarity to the original
voices, failing to meet the transferability requirements for defend-
ing against deepfake voices. In comparison, AntiFake leverages
an ensemble encoder approach to improve transferability, and our
experiments confirm its effectiveness. Similar to CLEARMASK, An-
tiFake achieves nearly 100% defense success rates in black-box
scenarios. However, AntiFake suffers from significant degradation
in the quality of the protected audio, which we will compare in
detail in Section 5.6.

5.3 LiveMask Effectiveness Evaluation

Next, we apply LIVEMAsK protected speech to the same open-source
voice synthesis models. As introduced in Section 4.4, LIvEMAsk does
not involve optimization for individual speech samples. Therefore,
we modify the constraint hyperparameters used in CLEARMASK. In
the universal spectrogram masking stage, we mask k = 16 fixed
frequencies. In the reverberation generation stage, the length of hy4
is fixed to 30 ms.

Similar to offline CLEARMAsK evaluation, we assess the perfor-
mance of each stage and LivEMask with both stages in the ablation
study. The experimental results are shown in Table 4. In the spec-
trogram masking step, the universal protection method only masks
fixed frequencies. However, removing more frequencies is not fea-
sible given the audio quality requirements. Additionally, due to the
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diversity of human languages, this fixed protection strategy can-
not guarantee effectiveness for all speech content. Consequently,
we observe that while universal spectrogram masking reduces the
similarity between synthesized and original speech compared to
unprotected speech, as shown in Table 3, the average similarity still
remains relatively high, and the standard deviation is noticeably
greater than CLEARMASK. Such result indicate that for some speech
samples, only masking fixed frequencies is not sufficiently effective.
Similarly, the universal reverberation generator can also reduce the
similarity between synthesized voices and the original voice, but
it fails to provide complete protection. In comparison, when we
combine the two stages, the protection demonstrates better transfer-
ability and effectiveness across all models. At least 99.7% of cloned
voices cannot bypass the ECAPA-TDNN ASV model, and none of
the samples can spoof the Soniox ASV model. Therefore, LIvEMAsk
achieves effective protection across various unseen voice synthe-
sis models. We further assess the computational requirements of
LiveMask. Specifically, when applying reverberation to a 48 kHz
audio signal, the computational cost is 70 million floating-point
operations per seconds (FLOPs), with a memory footprint of 80 MB.
These results demonstrate that LIvEMASK is capable of running on
lightweight devices, such as the Raspberry Pi 4, which features at
least 1 GB of random-access memory (RAM) and supports 3 billions
FLOPs. Moreover, the computational efficiency of LIVEMASK can be
further optimized for IoT devices by reducing the audio sampling
rate, thereby lowering both processing and memory demands.
Moreover, we compare LIVEMAsk with the existing online pro-
tection method, VSMask. We find that VSMask is ineffective against
unseen voice synthesis models. This is because its predictive model
is trained in a white-box setup and heavily depends on the weights
of a specific voice synthesis model. As a result, the generated pertur-
bations fail to maintain their effectiveness across different models.
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Table 5: CLEARMASK and LivEMask performance on com-
mercial voice synthesis platforms.

ElevenLabs Play.ht
Method I R T T SRRT | ETRRT | SRR T
N/A 10% | 193% | 00% | 12.2%

LivEMAsk 98.8% 100% 97.4% 100%
CLEARMASK 99.2% 100% 98.3% 100%

5.4 CLEARMaAsK and LivEMASK Performance on
Commercial Platforms

Next, we evaluate the performance of CLEARMASK and LIvEMAsk
on commercial voice cloning platforms. Similar to ASV models,
commercial voice cloning services typically use larger-scale models
and more extensive training data than open-source voice synthesis
models, resulting in greater robustness. Moreover, these models are
entirely black-box, meaning we can only counter them by enhanc-
ing the transferability of our protection methods.

Compared to open-source speech synthesis models, commer-
cial models require longer speech samples to improve synthetic
speech quality. Therefore, we concatenate the protected samples
into longer voice samples. We compare the voice rejection rates
of the ECAPA-TDNN and Soniox ASV models before and after ap-
plying CLEARMAsK and LIvEMAsK protection. The experimental
results are presented in Table 5. According to the results, commer-
cial voice cloning platforms achieve lower voice rejection rates than
open-source voice synthesis models. Almost all synthetic speech
samples generated from unprotected speech can successfully spoof
the ECAPA-TDNN model, and over 80% can even bypass the Soniox
speaker recognition API, revealing a severe threat to user privacy.
Additionally, because these commercial platforms do not require
any local resources, such as GPUs or development environments,
they present a greater threat than open-source models. With just
10 seconds of unprotected clear speech, these commercial models
can generate a large number of high-quality and highly similar
synthetic speech samples.

Next, we upload voice samples protected by CLEARMASK to the
API and test the similarity between the generated voices and the
original voices. Despite having no knowledge of the internal work-
ings of the API models, CLEARMAsK still demonstrates high transfer-
ability. Over 98% of the voice samples generated from CLEARMASK
protected samples cannot pass the ECAPA-TDNN based ASV model,
and 100% are rejected by the commercial speaker recognition APIL
Additionally, LIvEMASK can also successfully protect over 97% of
samples in real-time. As a result, both CLEARMAsk and LIVEMAsSK
demonstrate strong protection effectiveness on black-box voice
synthesis API platforms.

5.5 Human Perception Evaluation

To test the performance of CLEARMAsK for prevent synthetic speech
from spoofing human perception, we use perceptual speaker dissim-
ilarity (PSD) to measure it. The PSD score ranges from 1 to 5, where
1 indicates that the two voices are from the same speaker, and 5
indicates that the two voices are distinct. To save human effort,
we select the best-performing open-source and commercial voice
cloning models, YourTTS and Play.ht, as the adversarial models to
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Figure 4: PSD comparison of synthetic voice generated from
unprotected and protected speech samples.

verify the effectiveness of CLEARMAsk and LivEMask. We collected
over 550 responses from 28 listeners (17 males and 11 females, aged
20 to 35) with normal hearing ability, who are asked to rate the PSD
between the two voice samples.

We present the PSD results in Fig. 4. When the unprotected
voice samples are exposed to attackers, the synthetic speech from
advanced voice synthesis models can easily deceive human listeners.
Over 90% of responses indicate that the synthetic voice is the same
as or similar to the reference voice. These synthetic speech samples
are highly likely to fool listeners into misjudging the speaker’s
identity, potentially leading to financial losses or security threats.
In comparison, with CLEARMASK and LIVEMASK protection, the
synthetic voice sounds distinct from the real voice. Less than 2%
of the samples are identified as "similar to" the real voice. None
of the samples are considered to be from the same speaker as the
reference voice. When attackers use protected speech to synthesize
deepfake voice, the resulting speech not only exhibits different
characteristics from the original voice but also sounds hoarse and
unstable. As a result, the synthetic speech can be easily recognized
by human listeners as not being from the target speaker, resulting
in a failed attack.

5.6 CLEARMASK Audio Quality Comparison
with AntiFake

One of the main innovations of CLEARMAsK and LIvEMASK is that
the strategies we apply, including spectrogram masking, audio style
transfer, and reverberation generation, do not introduce ambient
noise to the original clear speech. This allows CLEARMAsk and
LivEMask to achieve better audio quality and naturalness compared
to other existing voice deepfake defenses based on perturbation
optimization. In this section, we use different evaluation metrics
to measure the audio quality of protected speech samples from
various protection methods.

Mean Opinion Score (MOS): A measurement of audio quality
based on subjective listener ratings. We use NISQA, a DNN-based
method, to estimate speech quality and naturalness on a scale from
1 to 5. Typically, when the MOS is higher than 3, the speech is
considered clear for human perception.

Short-Time Objective Intelligibility (STOI): STOI measures
the intelligibility of the processed input signal by comparing it
with the clean reference signal. The STOI score ranges from 0 to
1, representing speech that is absolutely unintelligible to highly
intelligible.

Perceptual Evaluation of Audio Quality (PEAQ): PEAQ is a
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Table 6: CLEARMASK and LIVEMaASK protected audio quality
comparison with AntiFake.

MOS T STOI T PEAQ T

AntiFake [52] | 2.82+0.66 | 0.34x0.11 | 2.41+0.83
LivEMASK 3.01+0.80 0.59+0.12 3.77+0.77
CLEARMASK 3.12+0.72 | 0.65+0.09 | 4.26+0.51
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(a) The original speech.
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(c) The speech protected by LIve-
Mask.

(d) The speech protected by An-
tiFake.

Figure 5: Spectrograms of raw speech and protected speech

samples from CLEARMASK, LIvEMAsK and AntiFake.
subjective audio quality evaluation based on real human perception.

Listeners evaluate their perceived audio quality and provide an
opinion score on a scale from 1 (very noisy) to 5 (imperceptible
noise).

Considering that white-box defense speech samples may have
better audio quality, this trade-off compromises their ability to
achieve transferable defense, making them less practical for use. In
the evaluation, we only compare AntiFake [52] with CLEARMASK
and LtvEMask. The comparison results are listed in Table 6. For
MOS, CLEARMASK is slightly better than LivEMask and the An-
tiFake methods. Although CLEARMAsk and L1vEMask do not apply
noise injection, the MOS measurement is sensitive to audio "col-
oration," which refers to artificial patterns. Therefore, additional
reverberation can also degrade the opinion score. In contrast, CLEAR-
Mask and LiveMask show much better results in STOI and PEAQ.
In Fig. 5, we display spectrograms from unprotected speech sample
along with the protected samples generated by CLEARMASK, LIVE-
Mask, and AntiFake. We observe that while CLEARMASK inevitably
causes some loss in audio quality compared to unprotected sam-
ples, the protected audio still retains most of its original features.
As a result, CLEARMAsK achieves relatively high STOI and PEAQ
scores. In contrast, LIvEMASK introduces additional reverberation
and signal loss compared to CLEARMASK, resulting in slightly lower
scores. By comparison, in AntiFake-protected audio, noise is dis-
persed across the entire frequency spectrum, with high-frequency
signals above 4 kHz almost entirely overwhelmed by adversarial
noise. Although AntiFake attempts to mitigate the impact of noise
based on human auditory sensitivity, it still severely degrades the
quality and intelligibility of the sound, making it unsuitable for
applications where high audio quality is required.

Yuanda Wang, Bocheng Chen, Hanging Guo, Guangjing Wang, Weikang Ding & Qiben Yan
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5.7 Adaptive Attackers

We consider two types of adaptive attackers. The first type, referred
to as R1, has no prior knowledge and attempts to recover the orig-
inal audio using conventional signal processing techniques, such
as WaveGuard [26]. The second type, referred to as R2, is aware
of CLEARMASK’s defense mechanism and employs deconvolution
methods to remove reverberation and restore the original audio.
R1 Attacker: We implement four transformations in WaveGuard:
Quantization-Dequantization (Quant.), Down/Up-sampling (Re-
samp.), Frequency Filtering (Filter.), and Mel-spectrogram Inversion
(Mel.). Specifically, we quantize the audio to 8 bits and down-sample
it to a frequency of 8 kHz.

The results are presented in Fig. 6. Compared to the raw pro-

tected audio (Baseline), WaveGuard-processed samples fail to re-
cover the voice features. None of these transformations enable
synthetic speech to bypass the ASV model. This is because WaveG-
uard attempts to eliminate subtle perturbations by compressing the
audio features. However, these approaches are ineffective against
the defense mechanisms in CLEARMASK, as the protected audio
contains no noise-based perturbations to exploit.
R2 Attacker: For more sophisticated attackers who have knowl-
edge about CLEARMASK, they attempt to remove the adversarial
reverberation effect in the protected speech. In this experiment, the
RIR length in CLEARMASK is fixed at 30 ms. However, the length
is an unknown hyperparameter for the adaptive attackers, so they
would adopt the same ensemble encoder to optimize RIRs of varying
lengths for deconvolution.

In Fig. 7, we show the impact of adaptive attackers using YourT TS
for deepfake voice generation. We find that regardless of the length
of the natural RIR used by adaptive attackers for deconvolution to
attempt to remove reverberation, they consistently fail to generate
qualified cloned voices from the processed speech samples. The
reason is that both spectrogram masking and audio style trans-
fer play critical roles in CLEARMASK protection. Moreover, these
techniques are irreversible, meaning that even with comprehensive
prior knowledge, attackers cannot mitigate their effects. Second,
once the speech sample is protected with CLEARMASK, the voice
embedding vector becomes similar to an unknown "target speaker”
voice. In this way, adaptive attackers are unaware of the real voice
embedding and will attempt to push the voice embedding vector
far from its initial state. Thus, this attack approach will not succeed
in recovering the genuine voice features.

Moreover, adversarial training can enhance the robustness of
speech synthesis models against protected samples. To test its feasi-
bility, we apply adversarial training to AdaIN-VC using adversarial
samples generated via PGD with 1,000 iterations. However, this
process requires 150 times more training time (over 20 days) than
standard training, making it excessively costly and potentially im-
practical for attackers. Additionally, it further degrades the model’s
ability to synthesize ordinary speech [33]. Therefore, we do not
discuss it in detail.

6 Discussion

CLEARMASK Protection Performance in Other Languages. In
Section 5, we evaluated the protection performance of CLEARMASK
and LiveMask. However, since different languages exhibit distinct
phonetic characteristics, it is essential to test the effectiveness of
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Figure 6: CLEARMASK performance
when adaptive attackers apply Wave-
Guard to recover the speech.

Table 7: CLEARMASK and LIvEMASK protection performance
in different languages.

Raw Speech CLEARMASK LivEMAsk
ASS| | ETRRT | ASS| | ETRRT | ASS| | ETRR T
English 0.577 4.2% 0.125 100% 0.154 99.8%
Mandarin | 0.496 7.6% 0.119 100% 0.151 99.6%
Spanish 0.520 5.5% 0.128 100% 0.159 99.0%

Language

CLEARMASK and L1vEMask in other languages as well. In this ex-
periment, we test CLEARMASK and LIvEMAsK in Mandarin and
Spanish, two of the most widely spoken languages in the world
besides English, to validate the transferability of CLEARMASK across
multiple languages. All datasets are collected from the Mozilla Com-
mon Voice [11]. We use YourT TS to generate deepfake voices, as its
foundation model is trained on multiple languages to ensure that
the speech synthesis capability remains consistent across different
target languages.

We use average similarity score (ASS) and ETRR to measure

the protection effectiveness. The experimental results are listed
in Table 7. When no protection is applied, the model’s ability to
synthesize Mandarin and Spanish speech is slightly weaker than
English, due to differences in the amount of training data. Neverthe-
less, the synthesized speech still exhibits high voice similarity, with
over 90% of the voice samples successfully passing ECAPA-TDNN
speaker verification. In contrast, when we apply CLEARMASK and
LivEMAsK protection to the reference voice samples, the similarity
of the synthesized Mandarin and Spanish voice samples is signifi-
cantly reduced. This demonstrates that our protection strategy is
effective across different languages, even when their pronunciation
and intonation are different.
LiveMask Performance under Different Sampling Rates. In
real-world scenarios, the audio sampling rate for real-time voice
communication is constrained by network speed and hardware
limitations, including microphones. To assess the effectiveness of
LivEMask under different conditions, we evaluate its performance
across various sampling rates.

As illustrated in Fig. 8, we test audio sampling rates of 8 kHz,
which is used in telephone communication, and higher rates includ-
ing 16 kHz, 24 kHz, and 48 kHz. Next, we synthesize deepfake voices
from resampled audios on YourT TS model. It is important to note
that we do not design distinct reverberations for different sampling
rates. Instead, we down-sample the RIR according to the audio’s
sampling rate. From the results, we observe that LIvEMAsk achieves

706

30
RIR Length (ms)

Figure 7: CLEARMASK performance
against adaptive deconvolution-based
reverberation removal.
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Figure 8: LIvEMASK performance com-
parison under different audio sam-
pling rates.

optimal defensive performance at the default 48 kHz sampling rate.
When the audio is sampled at 16 kHz, the defensive performance
has a slight decline but still maintains a protection success rate
above 97%. At 8 kHz, due to the significantly reduced sampling
rate, the effectiveness of deepfake voice synthesis is inherently
diminished. Overall, these results demonstrate that CLEARMASK
delivers robust protective performance across a range of hardware
and network conditions, maintaining its effectiveness even under
varying sampling rate constraints.

CLEARMASK Latency. We also compare the latency of CLEAR-
Mask with other defense methods. When the number of iterations
is set to 1000, Attack-VC [24] takes an average of 35 seconds to gen-
erate a protected sample. AntiFake [52] takes about three minutes
to provide protection due to the computational cost of gradient
calculations across multiple models. Additionally, its human-in-
the-loop mechanism for voice similarity assessment adds further
latency. In contrast, while CLEARMASK also computes gradients
across multiple models, it optimizes an RIR signal of under 1,440
samples at 48 kHz. Other methods modify the mel spectrogram,
requiring gradient calculations over thousands of dimensions, mak-
ing CLEARMASK significantly faster than AntiFake. The average
time for CLEARMASK reverberation generation is 40 seconds, and
when combined with the computation time for spectrogram mask-
ing and audio style transfer, the total average time is 60 seconds.
For L1vEMAsK, since frequency filtering and convolution can be
performed in real time, we consider its latency to be the length of
the RIR signal, which is approximately 30 milliseconds.

Ethical Statement. We are deeply committed to addressing po-
tential ethical issues associated with this research. We exclusively
utilize publicly available speech datasets and open-source speech
synthesis or speaker verification models, following their usage
guidelines and licenses. All human listeners have provided informed
consent after being informed of the study’s purpose and procedures
before participation, and the experiments involving human subjects
have received IRB approval. Their privacy and personal information
are also rigorously protected throughout the research process.

7 Related Work

7.1 Voice Synthesis and Countermeasures

Many VC and TTS models have been developed to embed a voice
onto given linguistic content. Early voice conversion methods relied
on parallel speech data for model training [17]. Recent VAE-based
voice conversion approaches are able to learn from different speech
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contents from various speakers [19]. AutoVC [38] introduces a bot-
tleneck mechanism to enable zero-shot voice conversion. Different
from VC, TTS can generate speech only according to textual input.
SV2TTS [27] can embed ambient speaker’s voice into the synthetic
speech. Currently, multiple TTS platforms support high-quality
and human-alike speech generation [3, 5].

Although voice synthesis is rapidly developing, it remains suscep-
tible to adversarial examples, as it is fundamentally based on deep
learning technology. Attack-VC [24] is the first work leveraging ad-
versarial examples to spoof voice synthesis models, misleading them
into producing unqualified voice samples. Despite its effectiveness
on the target voice synthesis model, this approach requires long
computation time to optimize adversarial perturbations, making it
impractical for real-time speech protection. VSMask [46] attempts
to address this issue by designing a predictive model that forecasts
perturbations for upcoming streaming speech. While it overcomes
the latency issue caused by offline optimization, the approach still
depends on gradient back-propagation to optimize the predictive
model, degrading its black-box performance. SampleMask [32] em-
ploys different types of frequency masks to protect speech samples
while preserving their quality and achieves black-box protection by
querying voice synthesis models. However, its protection is limited
in transferability, as it targets only a single model. Furthermore,
the protection is not foolproof, leaving some samples vulnerable to
attacks if the attacker attempts multiple times. AntiFake [52] offers
effective and transferable protection across various voice synthesis
models. Nevertheless, since it injects optimized noise into the raw
speech sample, it struggles to protect samples in real-time while
maintaining their naturalness and clarity. In contrast, CLEARMASK
overcomes the limitations of existing methods with a noise-free
and universal protection mechanism, providing a robust solution
for both online and offline applications.

7.2 Audio Style Transfer

Audio styles, characterized by elements such as timbre, spatializa-
tion, and loudness, present complex variables that are challenging
to manually manipulate. Recent developments in automatic audio
generation models enable intelligent audio style transfer with high
performance and efficiency. Drawing inspiration from image style
transfer [21], Grinstein et al. [22] propose an innovative audio style
transfer framework utilizing convolutional neural networks. In
addition, the approach of differentiable signal processing marks
a significant enhancement in this field [39], optimizing the audio
style transfer framework through backpropagation and effectively
addressing the issue of weak correlation between audio and pa-
rameters. DeepAFx-ST [42] applies differentiable signal processing
along with self-supervised training, achieving audio style trans-
fer without reliance on labeled data. Meanwhile, SpeechSplit [37]
provides a speech decomposition method to separate speech into
four components: content, pitch, rhythm, and timbre. This method
enables recent TTS models to generate speech with various audio
styles [25].

Moreover, style transfer can be utilized for adversarial example
generation. For example, StyleFool [12] presents an attack based
on style transfer to fool video classification models. Jin et al. [28]
utilize style-transferred speech audios to attack speech recognition
models. SMACK [51] successfully compromise speech recognition
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models by modifying the prosodies of benign speech samples. In
this work, we apply audio style transfer to protect human speech
against voice deepfake attacks without introducing additional noise.

7.3 Reverberation Applications

Reverberation is caused by sound waves reflecting off surfaces in
an environment. Reverberation effects are particularly noticeable
in large indoor environments, where the sound persists after the
original sound stops. Haas [23] conducts a comprehensive study on
the impact of reverberation on human hearing, noting that humans
cannot distinguish reverberations that diminish quickly. Although
reverberation is usually very weak, it is not negligible in audio
signal processing. A data augmentation approach based on rever-
beration simulation is used for speech [29] or speaker recognition
models [31], improving recognition accuracy, especially in far-field
scenarios. Meanwhile, reverberation plays a crucial role in over-
the-air adversarial audio attacks. Since adversarial speech samples
are created by adding subtle perturbations to the original audio,
which are weak and easily affected by reverberation, these attacks
often fail to compromise speech recognition models in the physical
world. To overcome this weakness, Imperio [41] designs a solution
to estimate the RIR in the room and adjust the initial adversarial
audio signal, while Chen et al. [16] further improve the effective
attack range through channel state estimation. Recent work points
out that reverberation can also be used for adversarial audio signal
generation. For example, AdvReverb [14] designs an adversarial au-
dio attack by adding reverberation, and TrojanRoom [15] proposes
a new attack using RIR to trigger a backdoor in speech recognition
without injecting extra noise. In CLEARMASK, we employ sophis-
ticated manipulation of natural RIR to generate reverberation in
speech, providing protection against voice deepfake attacks while
preserving speech naturalness and quality.

8 Conclusion

The misuse of voice synthesis technology presents a significant
threat to voice data security and privacy. Although numerous de-
fense mechanisms have been proposed in previous studies, they of-
ten demonstrate limited effectiveness in real-world applications. In
this paper, we introduce CLEARMASK, a noise-free defense method
designed to mitigate voice deepfake attacks by unknown adver-
saries. Additionally, we propose LIVEMASK, a real-time protection
mode of CLEARMASK, which is intended for instant communication
applications. We evaluate CLEARMAsK and LIVEMASK against vari-
ous unseen open-source and commercial voice cloning models. The
experimental results demonstrate that CLEARMASK and LIVEMASK
can effectively prevent synthesized voice from deceiving ASV mod-
els or human ears while preserving speech clarity and naturalness.
In summary, CLEARMASK is the first defense mechanism to suc-
cessfully integrate effectiveness, transferability, naturalness, and
real-time capability in combating deepfake voice generation.
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Appendix
A Voice Feature and Audio Style

When using audio style transfer to process speech audio, the most
critical challenge is: how to select the target audio style for protec-
tion? A straightforward solution is to select an audio style from
another speaker whose voice is different from the protected speaker,
and apply it to the original speech. However, this is impractical.
Fig. 9 shows the distributions of voice embedding vectors and au-
dio style embedding vectors from the same speech samples but
different speakers, with all vectors are reduced in dimensionality
using principal component analysis (PCA). The voice embedding
vectors exhibit clear boundaries between different speakers, while
the audio style embeddings from different speakers are randomly
mixed. This is because voice encoders are only trained on human
speech, whereas audio style features are derived from a wide range
of sounds beyond human language, covering a broader spectrum of
auditory characteristics. As a result, audio style extraction cannot
precisely distinguish between voice characteristics, suggesting that
different voices may share similar audio styles. This insight moti-
vates us to explore new audio styles to generate effective adversarial
examples.
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Figure 9: Voice and audio style embedding vectors from the
same speakers.

B Textual Input Samples

Table 8 shows a few textual input samples for deepfake voice syn-
thesis, which are generated via GPT-4.

Table 8: Textual input samples for deepfake voice synthesis.

Sentences

Hi, I'm calling from HR. We’re updating our records and need your Social Security
number.

This is the medical office. We require the patient’s file to be sent to a new email
immediately.

Finance department here. We need the wire transfer code for the recent transaction
to finalize it.

This is tech support. We’ve detected unusual activity on your account. Please
provide your password for verification.

I'm outside the building without my ID. Can you buzz me in or give the access
code?

This is from IT support. We've noticed a security breach. Please provide your
username and temporary password immediately.

Hi, we’re updating the security protocol. Can you confirm your employee ID and
access badge number for verification?

Hello, I'm handling a critical project update. Can you email me the latest financial
forecast document right now?

This is the service desk. To restore your account access, we need you to confirm
your mother’s maiden name and birth date.

Calling from customer service. To prevent your account from being locked, please
provide the recent one-time password sent to you.
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