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Abstract—IoT devices provide users with great convenience
in smart homes. However, the interdependent behaviors across
devices may yield unexpected interactions. To analyze the po-
tential IoT interaction vulnerabilities, in this paper, we propose
a federated and explicable IoT interaction data management
system FexIoT. To address the lack of information in the
closed-source platforms, FexIoT captures causality information
by fusing multi-domain data, including the descriptions of apps
and real-time event logs, into interaction graphs. The interaction
graph representation is encoded by graph neural networks
(GNNs). To collaboratively train the GNN model without sharing
the raw data, we design a layer-wise clustering-based federated
GNN framework for learning intrinsic clustering relationships
among GNN model weights, which copes with the statistical
heterogeneity and the concept drift problem of graph data. In
addition, we propose the Monte Carlo beam search with the
SHAP method to search and measure the risk of subgraphs, in
order to explain the potential vulnerability causes. We evaluate
our prototype on datasets collected from five IoT automation
platforms. The results show that FexIoT achieves more than
90% average accuracy for interaction vulnerability detection,
outperforming the existing methods. Moreover, FexIoT offers an
explainable result for the detected vulnerabilities.

Index Terms—Federated graph learning, model explainability,
vulnerability analysis, IoT, smart home

I. INTRODUCTION

A growing number of smart devices are deployed in modern
homes to achieve home automation. The devices are controlled
by rules that follow the trigger-action paradigm. For example,
a SmartThings [1] app has the automation rule (R1) “If smoke
is detected (trigger), turn on the water valve and start alarm
beeping (action)”. According to a recent survey [2], 82.4%
of smart homes have multiple rules for controlling a single
device. These rules allow devices to interact with each other,
referred to as IoT interaction.

However, unexpected IoT interactions could lead to vulner-
abilities such as action conflict and action revert, which result
in severe security and privacy risks. For instance, suppose a
user has set up the above SmartThings rule R1. Unexpectedly,
as soon as the water valve was turned on and a water leak
was detected in the kitchen, the following SmartThings rule
R2 “Close the water valve when a water leak is detected”
would close the water valve. In consequence, the two rules
compose a vulnerable interaction, which exposes the vul-
nerability “the water valve fails to turn on when smoke is
detected” because of the action conflict “water valve opening
and closing”. Such vulnerable interactions can be caused by
user errors [3]–[5] and physical attacks [6]–[9].

To avoid interaction vulnerabilities, it is crucial to manage
the IoT automation rules and track the trigger-action infor-

mation flow. Naturally, the IoT automation rules follow the
general trigger-action paradigm, and the interactions among
rules can compose an interaction graph. Automation rules can
be represented by nodes, and the edges are “trigger-action”
connections among different rules. A naive idea is to detect the
sensitive event based on predefined security policies, and then
trace it back to find root causes. One may consider querying
a graph database that stores interaction graphs.

However, the query or search-based methods have limited
coverage of the security policies or vulnerability patterns.
Most methods [10]–[14] pre-define security policies and vul-
nerability patterns within a single platform [2]. For example,
ProvThings [11] requires users to define and input policies
describing sequences of causal interactions with a graph
database backend. Yet, the predefined policies can hardly
cover potential new vulnerabilities across heterogeneous plat-
forms. As a result, it may yield significant false positive
and false negative errors. Moreover, federated query-based
methods [15]–[18] are not applicable. Even though common
security policies could be extracted and shared among multiple
houses, device interactions in different houses do not intersect.
Each interaction graph is a complete data sample. Therefore,
the query outcome for vulnerability detection in a single house
cannot necessarily be computed over the union of source
databases of multiple houses.

Another approach profiles the behaviors of systems by
analyzing event logs [19]–[21]. However, they cannot fully
expose the interaction correlations between different events.
Their limitations are three-fold. First, considering the complex
causal dependencies among multiple automation rules, it is
hard to accurately mine the cross-app interaction logic from
event log sequences, which are within individual devices [13].
Second, sharing smart home usage data with a third party
might cause privacy leakage issues such as the leakage of
living habits and routines, while a dataset from a single house
is insufficient for training a model with high generalization
ability. Third, the mining results are difficult to interpret.
When a threat alarm is generated, the users can hardly learn
the exact segment of device interactions that caused the issue.

To address these problems and limitations, we propose
FexIoT, a Federated and explicable GNN-based approach
for automatic IoT interaction vulnerability analysis. For an
interaction graph, the node features can be represented by
semantic-aware word or sentence embeddings. Compared with
benign graphs, vulnerable interaction graphs could have dif-
ferent graph patterns that express abnormal behaviors. FexIoT
utilizes the GNN model to learn the interaction patterns.
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Meanwhile, as the event logs belong to different platforms
and households, by leveraging federated learning, we can
collaboratively develop a more generalized model while re-
taining users’ data locally. Moreover, the interaction graph
allows to search and extract a special subgraph that contains
execution flow paths related to abnormal behaviors. Based on
the extracted flow path, we can explain the model’s predictions
and identify the causes of vulnerable interactions. There are
three key technical challenges for IoT interaction analysis
across multiple closed-source platforms.

(i) How to extract and represent real-time interaction
causality information from heterogeneous closed-source plat-
forms? Existing data mining methods take event logs as
input [19]–[21]. They ignore semantic information such as
automation logic and device relations. Moreover, most event
logs are coarse-grained data as they only contain a timestamp,
object, and attribute status. As a result, it is hard to extract
fine-grained trigger-action logic. Given that the app descrip-
tions contain essential trigger-action causality information,
we propose to fuse multi-domain sequence information into
interaction graphs using natural language processing (NLP)
techniques. With the fused IoT interaction graphs, we can
apply GNN models for interaction analysis in a unified format.

(ii) How to build the vulnerability detection model with
high heterogeneity in datasets while avoiding sharing raw
data? One household has a limited number of devices, which
makes it infeasible to train a custom and robust GNN model.
Federated learning (FL) allows for collaboratively training a
model without exposing raw data. However, the data het-
erogeneity leads to poor modeling performance with slow
convergence and low accuracy in FL training paradigms [22]–
[24], especially when the data distribution is time-varying or
not well balanced among different clients. To overcome this
challenge, we design a layer-wise clustering-based federated
graph contrastive learning framework. We train a shared vul-
nerability detection model by differentiating normal and vul-
nerable graphs over non-i.i.d. datasets with high generalization
ability without sharing users’ data.

(iii) How to adapt to new vulnerability patterns and auto-
matically identify potential causes of vulnerable interactions?
The interactions in the IoT world are complex due to the
different types of devices and threats. Even though we ap-
ply FL to train on various graph data from different home
sources, we acknowledge that there could be drifting samples
that evolve from existing vulnerabilities or are novel kinds
of vulnerabilities. We propose to filter out drifting samples
based on federated contrastive graph representations and the
corresponding median absolute deviation. Then, we design
an efficient cause analysis method by exploring different
subgraphs of an interaction graph with Monte Carlo beam
search (MCBS) [25], which is a heuristic game tree search
algorithm. Based on the potential correlation features of IoT
devices, we propose to use the optimal SHAP values [26] to
measure the risk of subgraphs of a complete interaction graph.
Thus, we can trace the most possible information flow chain
relevant to the vulnerable interactions.

Rule R1 from SmartThings App

Turn lights on if motion is detected

Rule R3 from Home Automation

Turn on water valve and unlock doors if smoke 

is detected

Rule R2 from Alexa Skill

Lock front door when living room lights are on

Rule R4 from IFTTT Applet

Turn off water valve when water leak is detected

Rule R1 from SmartThings App

Turn lights on if motion is detected

Rule R3 from Home Automation

Turn on water valve and unlock doors if smoke 

is detected

Rule R2 from Alexa Skill

Lock front door when living room lights are on

Rule R4 from IFTTT Applet

Turn off water valve when water leak is detected

(a) Rules in a smart home. (b) An event log file example.

Fig. 1: The smart home rules and event logs.

In summary, we make the following contributions:
• We propose a cross-modality data fusion method, which

fuses sequence data from multiple sources into graph data
to capture the causality of IoT interaction information.

• We design a layer-wise clustering-based federated con-
trastive GNN model for non-i.i.d. graph datasets to learn
contrastive graph representations, and it achieves more
than 90% average accuracy in vulnerability detection.

• We propose an efficient cause analysis method based on
Monte Carlo beam search and the SHAP value to eval-
uate the risk of subgraphs, which automatically provides
explanations for any complex vulnerable interactions.

II. PRELIMINARIES

We first introduce the IoT interaction graph, and then for-
mally define the problem of interaction vulnerability analysis.

Definition 1 (Interaction Graph). Let G = {V, E ,X}
represent an interaction graph, which consists of a set of nodes
V , edges E and node features X . Each node v ∈ V is an
automation rule from an IoT automation control app (e.g.
a SmartThings app). For example, the rule R1 in Figure 1a
is represented as a node. Each edge e ∈ E represents the
correlation between two rules. For instance, rules R1 and R2
in Figure 1a compose the “trigger-action” correlation edge,
which means R1 triggers the execution of R2. Each node
v ∈ V is associated with feature information Xv , which is
a word or sentence embedding of a rule. Each graph G will
have a graph label y, which denotes whether the interaction
graph is vulnerable or not.

We define two types of interaction graphs corresponding to
static analysis and dynamic analysis. The first is the offline
interaction graph, which is constructed purely from app rule
descriptions for static analysis. The advantage of rule de-
scriptions is that it provides “trigger-action” interaction logic,
and the possible interactions among rules can be modeled
by the offline interaction graph. But rule descriptions cannot
reveal the actual device status under customized settings. For
example, it cannot show the specific device involved (e.g., the
location of lights in Figure 1a R1 and the device execution
time). Moreover, rule descriptions cannot represent the real-
time device status such as whether the water valve is on or off
at a specific time. The exact device status affects vulnerability
detection results. Furthermore, many platforms such as Home
Assistant [27] allow users to customize automation rules, so
different houses might have different rules.

1518

Authorized licensed use limited to: Michigan State University. Downloaded on October 27,2023 at 18:39:06 UTC from IEEE Xplore.  Restrictions apply. 



Therefore, for dynamic analysis with heterogeneous closed-
source platforms such as IFTTT [28], Google Assistant [29],
and Amazon Alexa [30] during runtime, we define the online
interaction graph, which is constructed from event logs and
app descriptions. Figure 1b shows an example of event logs.
One benefit is that it records time, the specific device, and
the device status. However, such event logs are coarse-grained
and lack the key “trigger-action” logic information. The status
changes of a device can be triggered by different possible
events. For example, it can be hard to determine which
previous event triggers “Front door is locked” in Figure 1b.
Therefore, to derive the actual trigger-action interaction graph,
we need to identify the “trigger-action” information from the
deployed rules. This motivates us to fuse app rule descriptions
and event logs. To summarize, the main difference between
online and offline graphs is that online graphs reflect real-time
device interaction information.

Definition 2 (Interaction Vulnerability). Interaction vul-
nerability refers to the vulnerability coming from interactions
between devices, and the environment. Specifically, we label
the graph as vulnerable if it satisfies at least one of the 6 types
of vulnerabilities identified by existing work [31]: condition
bypass, condition block, action revert, action loop, action
conflict, and action duplicate. Internal graph vulnerability
refers to the vulnerabilities inherently from interaction graphs,
while external graph vulnerability refers to the vulnerabilities
caused by external attacks. Instead of enumerating all possible
interaction vulnerabilities, we design a federated GNN model
to learn the vulnerability patterns. Given the interaction graph
G, our task is to learn the graph embedding Zt at each time t,
and Zt is used for vulnerable interaction prediction. Consider-
ing a graph can contain multiple types of vulnerabilities, multi-
class classification is not suitable. Thus, the prediction problem
is formulated as a binary classification problem f(Zt) → yt

that maps the interaction graph embedding Zt to the binary
label yt of interaction incident at a given time t. Finally,
we identify a subgraph Gsub with the highest risk score
by exploring various subgraphs with the SHAP-based Monte
Carlo beam search, which explains the prediction result yt.

III. SYSTEM DESIGN

We design FexIoT for IoT interaction analysis as shown in
Figure 2. A client represents a house where data is collected
and a GNN model is trained using federated learning. Each
client can run FexIoT on devices such as a Raspberry Pi
or NVIDIA Jetson Nano. Each client implements three main
components: data fusion from event logs and apps’ descrip-
tions, vulnerable interaction detection with federated GNN,
and vulnerability explanation with the Monte-Carlo beam
search-based method. A server can perform the clustering and
aggregation in FexIoT, which could be served by a security
solution provider.

A. Cross-modality Data Fusion for Graph Construction

We first propose a cross-modality data fusion method,
which fuses sequence data from apps’ descriptions and event
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Fig. 2: System architecture of FexIoT.

logs into graphs. Based on NLP techniques, we propose to
extract multi-grained semantic features. Creatively, we design
classifiers to aid in identifying the “action-trigger” connections
among devices and the environment in rules. Finally, we chain
different connections with event logs information to construct
the interaction graphs in heterogeneous platforms.

1) Processing App Description: We aim to obtain “trigger-
action” causal logic information from app rule descriptions.
With existing tools such as SpaCy [32], we can extract lin-
guistic elements. Specifically, we apply part-of-speech (POS)
tagging to categorize words in correspondence with a partic-
ular POS. For example, for an automation rule “Close the
water valve if a water leak is detected”, the root verb close
can be recognized as the main task. We are interested in direct
objects, nominal subjects and clausal complements to extract
the device objects, properties, and the main task. Additionally,
we eliminate the named entity because the same entity might
modify two distinct objects.

We then compute the rule correlation features based on
the above linguistic components as follows. (i) We compute
similarity features, which include the verb elements similarity
and object elements similarity. But a pair of sentences can have
a different number of verb or object elements. In such a case,
we calculate the dynamic time warping distance [33] of word
embeddings as the similarity score. (ii) We calculate the causal
relation features. Specifically, we check whether two sentences
have synonym, hypernym, meronym, or holonym relations. We
use one-hot vectors to represent these causal relation features.
(iii) We calculate sentence-level feature embeddings by using
sentence encoder [34] to express word sequences in sentence-
level embedding space. The trigger-action pair embedding A
is computed as follows:

A =
1

m

∑
Awi

+
1

n

∑
Awj

, (1)

where m and n are the numbers of words in the trigger and
action sentences, respectively. Awi is the embedding of word
wi, and Awj is the embedding of word wj .

2) Processing Event Log: We obtain real-time device status
information from event logs. We utilize the event logs gen-
erated by the apps, which contain timestamps, devices, and
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their status. We keep the key information while removing
noise from event logs. There are different types of noise in
raw event logs. For example, device execution failures can
cause execution errors to be recorded. The periodic reporting
of sensor readings also brings the noise in event logs. Thus, we
remove the repetitive readings and execution errors that do not
change the device status. Moreover, some sensor readings are
numerical values, while the corresponding app functions are
logical values such as “low” or “high”. For example, “humidity
in the living room is 32” is recorded in event logs when the
SmartThings app description contains the “humidity is low”
trigger. The Jenks natural breaks algorithm [35] is applied to
convert numerical values into logical ones. Thus, we clean the
log data, which is used for interaction graph construction.

3) Interaction Graph Construction: We first build a com-
plete offline interaction graph from all rules deployed in a
home. In the first phase, we construct “action-trigger” corre-
lation (the action of R1 triggers the execution of R2) pairs
among different rules, which is called interaction correlation
discovery. If two rule sentences have an “action-trigger”
correlation, we label it as true, otherwise, false. We use the
manually labeled IFTTT interaction flow dataset from [31]
and our new crawled IFTTT and SmartThings interaction flow
dataset as the training dataset. We extract features described in
Section III-A1, and train a binary classification model. Finally,
we apply the well-trained model to classify the unlabeled
rule sentence pairs. In the second phase, we randomly choose
and chain the “trigger-action” and “action-trigger” pairs into
interaction graphs. This makes the generated interaction graph
samples more representative and less prone to bias.

However, offline interaction graphs cannot reflect the exact
interactions in real-time device interactions. Moreover, the
devices have different types of “trigger-action” interactions,
which can compose different interaction graphs. Thus, we need
to match the current device status in event logs to the possible
interaction graphs. To achieve that, we extract the device name,
status, and event time from the event logs. With the “trigger-
action” logic in existing interaction graphs, we can match
devices and their status with explicit connections in interaction
graphs. Meanwhile, the timestamp assists in determining the
sequence of events. Thus, we integrate event logs and app
descriptions into a fine-grained real-time interaction graph.

B. Clustering-based Federated Contrastive Graph Learning

After the graph construction, we propose a fine-grained
clustering-based federated contrastive graph representation
learning model considering data heterogeneity and drifting
samples in FL. The learned graph representations can be used
for vulnerability detection. In our designed FL paradigm, each
client reserves two models. The first is the graph representation
learning model, which participates in the FL process in Algo-
rithm 1. The second is a linear classification model such as
an SGDClassifier, which locally learns to classify the learned
graph representation to detect vulnerable or normal graphs.

1) Contrastive Graph Learning Loss Function: In the graph
representation learning model, we design the contrastive learn-

Algorithm 1: Dynamic clustering-based federated GNN
Input: Graph dataset Gc of each client c, GNN model

weight Wc, GNN layer l < L, client cluster C,
global update round T , thresholds ϵ1, ϵ2

1 for t < T do
2 for c ∈ C do
3 Wc ← local training process
4 Wc = RecursiveClusteringAgg(1, C)
5 end
6 end
7 Procedure RecursiveClusteringAgg(l, C):
8 if l > L then
9 Return;

10 end
11 Receive l-th layer’s weights W l

ci from each client ci;
12 if ϵ1 > ||

∑
i∈[n]

|Gci
|

|G| ∆W l
ci || &&

ϵ2 < max(||∆W l
ci ||) then

13 Mi,j ← CosineSimilarity(W l
ci ,W

l
cj ) for i, j ∈ C

14 cluster1, cluster2 ← BinaryClustering(Mi,j)
15 W l

cluster1
← FedAvg(W l

c) for each c ∈ cluster1
16 W l

cluster2
← FedAvg(W l

c) for each c ∈ cluster2
17 end
18 else
19 W l

C ← FedAvg(W l
c) for each c ∈ C

20 end
21 Send W l

cluster back to each client c
22 RecursiveClusteringAgg(l + 1, cluster1)
23 RecursiveClusteringAgg(l + 1, cluster2)
24 End Procedure

ing [36] loss function in Eq. (2) for learning a distance function
to measure the dissimilarity of samples:

Lc = d2ij(1− yij) +max(0, k − d2ij)yij , (2)

where dij is the Euclidean distance between two graph embed-
dings, yij is 1 if graph Gi and Gj are from different classes,
and yij is 0 if graph Gi and Gj are from the same class. We
set a threshold k to restrict the unusual distance contribution of
graphs from different classes. Note that we apply existing well-
developed GNN models [37]–[39] in our federated learning
framework. Finally, the learned representations are used for
training a linear classification model to classify normal or
vulnerable graphs in each client.

2) Dynamic Clustering-based Federated Learning: We de-
sign a fine-grained dynamic clustering-based federated learn-
ing algorithm, which is based on the following observations.

There could be domain shifts when the knowledge trans-
fers across non-i.i.d. datasets in FL framework [40]. The
heterogeneity is two-fold. First, the interaction graph can be
either homogeneous or heterogeneous. Different households
deploy heterogeneous devices and different users have their
own usage habitats, which can cause graph heterogeneity.
The heterogeneous graph data will cause negative transfer
among users and decrease the model performance. Second, the
graph dataset is unbalanced and non-i.i.d.. The non-i.i.d. graph
datasets from different households will cause biased stochastic
gradients, which will impede the convergence of FL models.
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Another key observation is that despite the heterogeneity,
there exist similar data distributions in smart homes because
different users can have common automation rules. We assume
that there exist several clusters of households, where the
graph datasets from each cluster satisfy the i.i.d. property
following [41]. There will be some graph datasets that share
common feature information, which could be grouped into
several clusters. As a result, a new challenge ensues on how
to effectively aggregate clients into different clusters.

Consider the clustering-based FL setting with a cen-
tral server and a set of n clients {c1, c2, · · · , cn},
which can be dynamically clustered into different clusters
{cluster1, cluster2, · · · }. Each client ci has a set of inter-
action graphs G = {G1, G2, · · · }, and conducts the graph
classification y = h∗

k(Gi), where h∗
k is the optimal graph

classification model for cluster set clusterk. The graph feature
information can be reflected by the model parameters and
their gradients [41]. Existing federated graph classification
over non-i.i.d. graphs [42] is coarse-grained since it only
considers the similarity of parameters of a whole model.
However, from the bottom up, the degree of similarity among
deep models decreases [43]–[45]. Therefore, to learn the fine-
grained clustering structure, we design the bottom-up layer-
wise dynamic clustering algorithm to obtain the similarity
among weights of clients as shown in Algorithm 1.

Specifically, suppose n is the number of clients in FL
training, each client c performs local GNN training (lines 2-4),
which follows the traditional FL training paradigm. The server
receives n local models W l

c (line 12). The dynamic clustering
on the server starts from the bottom layer l1. We define two
thresholds ϵ1 and ϵ2 to determine the conditions of clustering
of different clients (line 13):

ϵ1 > ||
∑
i∈[n]

|Gci |
|G|

∆Wci ||,

ϵ2 < max(||∆Wci ||),
(3)

where |Gi| represents the number of graphs owned by client
i, |G| is the total number of graphs owned by all clients,
and ∆Wci is the local update of model weights of client
ci. ϵ1 measures the degree of fluctuation of FL training,
and it bounds the relatively stationary point of the global
model before initiating the clustering. Meanwhile, if there
are large norms of weight update that are greater than ϵ2,
it means high heterogeneity occurs among different clients,
and the clustering starts to avoid performance degradation
among clients. The two thresholds can be determined via initial
experiments on the validation sets [41]. If the conditions in
Eq. (3) are satisfied, the server further divides the clients
from the same cluster into two sub-clusters and performs
model aggregation within each sub-cluster (lines 14-17). This
process continues to the next layer recursively. Thus, with
more layers of client models being clustered and aggregated,
each cluster of clients has reduced divergence, which achieves
model converging in fewer training rounds.

3) Drifting Interaction Pattern Detection: Due to dynamic
changes in smart device settings and the presence of different
attacks, the testing interaction graph distribution may diverge
from that of the training dataset in actual deployment scenar-
ios. The performance of the detection may be impacted by
the drifting samples, which are new interaction vulnerability
patterns that are different from already known vulnerabili-
ties. Considering the high false-positive or false-negative rate
caused by drifting samples, we design the interaction graph
drifting pattern analysis method based on the above federated
graph representation learning and median absolute deviation
(MAD) [46] in the model application stage.

First, in each client, we use the well-trained model in
FL to map all the training graph data into latent space. We
can calculate the centroid of each class by computing the
mean value for each dimension of the latent embedding.
Similarly, for the incoming graph data, we also generate
latent embeddings. In this way, we can compute the Euclidean
distance dki between the centroids of each class in the training
dataset and the test sample xk. Second, based on MAD, we
can estimate the graph data distribution within each class i by
computing MADi in the training dataset, which is the median
of the absolute deviation from the median d̃i of distance dji .
The dji is the distance between the latent embedding of each
training sample to its centroid in class i. Third, for each
testing sample we check if dki is large enough to make xk an
outlier of class i. Specifically, we denote the “normal” label
as 0 and the “vulnerable” label as 1. Then Ak

0 =
|dk

i −d̃i|
MAD0

,

Ak
1 =

|dk
i −d̃i|

MAD1
and Ak = min(Ak

0 , A
k
1). If Ak is greater than

a threshold TM that is set as 3 empirically following existing
practices [46], then xk

t is a potential drifting sample. The MAD
method allows each class to decide outliers based on its in-
class distribution. In the model application stage, given a set
of testing interaction graphs {G}, we first check each graph
Gi to see if it is a drifting sample. If a new sample has a
larger distance from all existing classes, then it is a potential
drifting sample. In this way, we can filter out and manually
inspect drifting samples that are outside of the training space.

C. Vulnerable Interaction Analysis

Given a detected vulnerable graph, we design the SHAP-
based Monte Carlo beam search (MCBS) algorithm to discover
the causes of vulnerable interactions considering the IoT
dependency relationship. We first formalize the vulnerability
explanation problem. G represents the interaction graph that
is examined by a GNN model followed by a linear classifier
h(·) in the model application stage, and the prediction result
is y. The vulnerable interactions are caused by a connected
subgraph Gsub in an interaction graph. We further define a
cooperative game following [47] to measure the contributions
of different parts (players) of a graph. Suppose Gsub is one
player, where Gsub contains nodes {v1, v2, · · · , vs}. Other
nodes in G\Gsub are other players {{vs+1}, · · · , {vm}}. Our
goal is to find the most possible subgraph Gsub that is
responsible for the prediction y.
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Algorithm 2: SHAP based Monte Carlo Beam Search

Input: GNN model h(·), interaction graph G, MCBS
iteration number I , kernel SHAP samples K, the
least node number Nmin, the root of search tree N0

Output: subgraph Gsub

1 for i ¡ I do
2 Si = N0, curPath={N0}
3 while |h(Si)| > Nmin do
4 for subgraph Gi in Blevel(Si) do
5 for k < K do
6 g(z′) = h(Si)
7 h(T−1

x (z′)) = h(Si

⋃
Gi)

8 end
9 Score(h(·, G,Gi)) = W

10 end
11 Select Nnext following Eq. 7
12 Si = Nnext

13 curPath = curPath+Nnext

14 end
15 Sl = Sl

⋃
Si

16 end
17 return subgraph Gsub with the highest score from Sl

However, the device’s abnormal behaviors are hardly no-
ticeable until certain consequences occur. Moreover, an app
can trigger unexpected events that are subscribed by another
device, or different apps could introduce contradictory changes
to a device attribute. Directly using the prediction scores to
measure the risk of subgraphs is problematic, since it cannot
capture connections among different graph structures. Suppose
there is a subgraph Gsub that contains the exact interaction
vulnerability chain, any subgraph Gcon containing Gsub will
also cause the vulnerable interaction. Meanwhile, a subgraph
Ginc that is included in Gsub may also trigger the same
threat, but Ginc can only reveal part of the causes instead of
the complete causal route. Another method SubgraphX [48]
applies the Shapley value to measure the risk of subgraphs,
where they assume the players are independent. However, in an
interaction graph, the existence and actions of nodes (players)
are not independent because the deployment of devices is
related to each other. Therefore, the Shapley value could
neglect the dependent relations among different nodes.

We propose to calculate the SHapley Additive exPlana-
tions [26] (SHAP) value to evaluate the risk score of subgraphs
and apply MCBS to improve the efficiency of the search
process as shown in Algorithm 2. In the MCBS tree, following
the notation in SubgraphX [48], the root node N0 is the input
graph G, and each node Ni in the search tree is a connected
subgraph Gsub, the edge in the search tree is the pruning action
a. A subgraph Gj is acquired by the action aj from Gi,
which is represented by (Ni, aj). We combine beam search
with Monte Carlo tree search to store a set of best playouts,
which is called beam (lines 2-4 in Algorithm 2). The size of
a beam Blevel is fixed for each level, which shows that Blevel

best nodes are kept at each level. From the model perspective,
the target node feature is aggregated from a limited number
of neighbor nodes. From the smart home perspective, devices

are directly related to limited neighboring devices. Therefore,
it is reasonable that only neighboring nodes in a beam Blevel

are employed for information aggregation.
The SHAP approach can rate the relevance of each fea-

ture for a specific prediction. SHAP values are the Shap-
ley values of a conditional expectation function [26], which
can better measure the feature importance. Here, we use
{G1, · · · , Gi, · · · , Gn} to represent n subgraphs of an inter-
action graph G. The analysis result can be written as:

G∗ = argmax
|Gi|≤Nmin

SHAP(h(·), G,Gi), (4)

where Nmin is a hyperparameter that limits the number of
nodes in a subgraph. Following SHAP framework, the SHAP
value ϕi can be computed as follows:

ϕi(h, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[hx(z

′)−hx(z
′\i)], (5)

where x′ is the set of total non-zero entries, z′ is a subset
of x′, |z′| is the number of non-zero entries in z′, M is the
number of set of all entries, z′\i denotes setting z′i = 0. In
our proposed Algorithm 2, non-zero entries mean the nodes
(players) of a graph that are included in the Monte Carlo beam
search process. hx(z

′) = E[h(z)|zS ] means it calculates the
expectation across all possible node combinations, where S
is the non-zero indexes in z′. Solving Eq. (5) is challenging.
Thus, we apply the kernel SHAP to approximate it (lines 5-9
in Algorithm 2).

L(h, g) =
∑
z′∈Z

[h(T−1
z (z′))− g(z′)]2 · C,

C =
M − 1(

M
|z′|

)
|z′|(M − |z′|)

(6)

where we assume g(z′) = Wz′ is the explanation model
following a linear form. g(z′) matches the original model
h(z) when z = Tz(z

′). Tz(·) is a mapping function that
converts the inputs to the original input space. We use the
weighted linear regression to solve the equation since L(h, g)
is a squared loss and g(z′) is the linear function. The intuition
is that Eq. (5) is calculating the difference of means, which
has a connection with linear regression, and the mean value
is the best least-squares point for a set of data points. Thus,
noted by [26], we calculate ϕi(h, x) = wj(xj −E(xj)) given
h(x) =

∑M
j=1 wjxj + b, which is a linear classification model

such as SGDClassifier as introduced in Section III-B.
During the MCBS process, the node Nnext selection crite-

rion is computed as follows (lines 11-13 in Algorithm 2):

argmax
aj

Q(Nnext, aj) + λR(Nnext, aj), (7)

where Q(Nnext, aj) is the average reward score over several
visits, λ is the hyperparameter that balances the exploration
and exploitation. R(Nnext, aj) is the immediate reward for
choosing Nnext, which is the SHAP(h(·), G,Gi) score. Fi-
nally, Algorithm 2 will output the subgraph Gsub with the
highest risk score for cause analysis.
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TABLE I: Statistics of interaction graphs.

Type Label Total
Graph Num.

Vulnerable
Graph Num.

Homo.
(IFTTT)

labeled 6,000 1,473
unlabeled 10,000 ∗

Hetero.
(5 Platforms)

labeled 12,758 3,828
unlabeled 19,440 ∗

IV. EVALUATION

A. Experimental Setting and Dataset

To simulate the FL training, we evaluate the dynamic
clustering-based federated GNN on a high-performance com-
puting cluster, which is equipped with Intel(R) Xeon(R) Gold
6148 2.4GHz CPUs running on CentOS 7. For collecting app
description data, we use Scrapy [49] to crawl smart home app
rules from the following 5 platforms:

• For SmartThings [1], we crawl rule descriptions from 185
open-source apps.

• For Home Assistant [27], we crawl rule descriptions from
574 blueprints.

• For IFTTT [28], we integrate 315,393 applets from [31]
and newly crawled 1,535 applets.

• For Google Assistant [29], we crawl 480 services and
4,812 action commands.

• For Amazon Alexa [30], we crawl 2,232 services and
3,274 skill commands.

For collecting event log data, a volunteer deploys the off-
the-shelf smart devices in a house and collects event logs
for a whole week. We remove and replace potentially private
information, e.g., we modify a rule from “Alexa, turn on
HEATER NAME” to “Alexa, turn on heater”. Besides the
inherent vulnerabilities in randomly generated graphs, we also
consider the external graph vulnerabilities. Thus, following
HAWatcher [13], we simulate 5 types of attacks to generate
external graph vulnerabilities by modifying event logs: fake
events, fake commands, stealthy commands, command failure,
and event losses. We match the SmartThings “trigger-action”
pairs in our constructed heterogeneous interaction graphs. We
construct 600 online interaction graphs, of which 300 are
vulnerable interaction graphs.

Eventually, we build an IFTTT graph dataset with 6,000
labeled graphs and a heterogeneous graph dataset with 12,758
labeled graphs from the five platforms as shown in Table I.
The number of nodes in each graph is from 2 to 50. We
apply DGL [50] to implement graph construction, and use text
embeddings to represent node features in interaction graphs.
Specifically, we use spaCy [32] en core web lg model to
transform extracted key phrases into word embeddings, and
each embedding has 300 dimensions. App descriptions are
verbose, and encoding key phrases can better model interaction
logic in descriptions. We then use the Universal Sentence
Encoder [34] to transform rules from Google Assistant and
Amazon Alexa skills into sentence embeddings, and each
embedding has 512 dimensions. As voice assistant commands
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0.80

0.85

0.90

0.95

1.00

MLP
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GradientBoost

Fig. 3: Different classifiers for correlation analysis.

are concise, directly using the sentence encoder can better
model the meaning of word sequences. Therefore, the nodes
of graphs for different platforms have different feature spaces,
which jointly compose the heterogeneous graphs.

There are two labeling phases during the dataset construc-
tion, which include “action-trigger” correlation labeling and
“graph vulnerability” labeling. The “action-trigger” correlation
labeling is introduced in Section III-A3 and will be eval-
uated in Section IV-B. Here we detail the “internal graph
vulnerability” labeling process, where we check whether the
interaction vulnerability inherently exists in an interaction
graph. Two volunteers who are studying cyber-physical and
IoT security first summarize the security procedures from the
literature such as [11]–[14]. Then, they search for six types
of vulnerabilities [31] as mentioned in Definition 2. They
manually label a graph as vulnerable if any vulnerability is
found and then cross-check the labeling results.

B. Interaction Correlation Discovery Evaluation

There could exist an exponential number of correlations
based on the number of rules. To efficiently remove the
unrealistic correlations and save manual efforts, we use classi-
fication models to discover whether there is a “action-trigger”
correlation between two rules. Specifically, we manually label
5,600 “action-trigger” interaction pairs and 8,000 unrelated
pairs. Then, we extract interaction pair features as described
in Section III-A.

We evaluate four classifiers implemented with Scikit-
learn [51]. Multi-layer Perceptron (MLP), RandomForest, K-
nearest neighbors (KNN), and GradientBoost classifiers are
trained on the same extracted features. We obtain the best
hyperparameters with the grid search method. The results in
Figure 3 are reported according to the 10-fold cross-validation.
The MLP achieves the best recall rate of 99.8%, while KNN
achieves the best precision rate of 99.7%. The RandomForest
achieves the best average accuracy of 98.4% and an F1 value
of 98%. MLP can better define the feature space with more
layers. The RandomForest model avoids overfitting by using
a random subspace technique. In summary, all four models
achieve excellent performance, which proves the effectiveness
of our extracted features. Considering the highest scores in
precision, recall, and F1 value, we apply the MLP, KNN,
and RandomForest to predict the remaining unlabeled sentence
pair correlations. If the three models have different predictions,
we inspect and discuss the labeling results to ensure the
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accuracy of the labeling. Finally, we chain the IoT automation
rule pairs into interaction graphs.

C. Clustering-based Federated GNN Evaluation

After graph construction, FexIoT proceeds to conduct fine-
grained clustering-based federated contrastive graph represen-
tation learning for vulnerability detection. Note that as it is
hard to build large-scale smart homes in real life, following
the template of deployed smart homes, we leverage the offline
graphs to produce a set of online interaction graphs for
federated GNN evaluation. The only difference is that online
interaction graphs reflect real-time IoT interactions.

We compare FexIoT with two GNN models, four baselines,
and five different Data distributions. The two homogeneous
GNN models are: (i) GCN [37] is a convolutional network
operating on graphs, and we adopt three graph convolutional
layers. (ii) GIN [38] is a graph isomorphism network model,
and we adopt the original model architecture. For the het-
erogeneous graph classification model, we choose MAGNN
model [39], which learns heterogeneous graph embeddings
based on metapath aggregation.

The four federated learning framework baselines are: (i)
Federated multi-task learning (FMTL) [41], which groups the
clients into clusters by using geometric aspects of the loss
surface. (ii) Graph clustered federated learning (GCFL+) [42],
which is a gradient sequence-based clustering method for
graph classification. (iii) Federated averaging (FedAvg) [52],
which aggregates locally-computed updates in federated learn-
ing. (iv) Self-training in clients (Client), which trains the GNN
locally without any communications.

Data Distribution Configuration. We study the impacts
of different data distributions on the federated GNN models.
We split the IFTTT graph dataset according to Dirichlet
distribution to simulate the non-i.i.d. dataset in each client, and
we set the number of clients as 10. We draw class marginal
distribution from Dirichlet distribution with the probability
density function p(x) ∝

∏k
i=1 x

αi−1
i . α is the positive

concentration parameter, which we set to 0.5, 1, 2, 5, and
10. When α is close to 0, most of the generated values drawn
from the Dirichlet distribution will be close to 0. Thus, we
can simulate clients with unbalanced and non-i.i.d. datasets.

Following the above Dirichlet distribution, different clients
will have different numbers of graphs. We split 80% of the
IFTTT dataset as the client training dataset and 20% of the
dataset as the testing dataset for each trial. During the training
process, we empirically set the two thresholds ϵ1 and ϵ2 in
Eq. (3), which are related to the size of model weights, to
start and end the layer-wise clustering process. We found
that the local clients achieve decent performance when the
two values are set between 0.5 and 2. The value setting also
depends on the initialization settings such as the learning rate
with the corresponding optimizer. We set the learning rate as
0.001 in the Adam optimizer, ϵ1 is 1.2 and ϵ2 is 0.8 if they
are not specified in the following experiments. We apply the
weighted cross-entropy loss function to handle class imbalance
for interaction graph classification. We set up the weight given

to each class in the cross-entropy loss according to the inverse
ratio to class frequencies. Figure 4 shows the average accuracy,
precision, recall, and F1 value of models.

GNN Models Evaluation. We test the influence of different
GNN models in the federated learning process. Note that the
GNN models are used for graph representation learning in the
FL process. We use SGDClassifier from Scikit-learn [51] to
implement the normal or vulnerable binary classification. As
shown in Figure 4, the GIN model achieves better performance
than the GCN model, which is consistent with the previous
study [38]. Moreover, we found that when the dataset is more
evenly distributed (α is larger), both the GCN and GIN achieve
better performance. However, the data distribution indeed has
a great impact on the model performance. For example, the
F1 values of the GIN model in FedAvg are 0.735 and 0.748
when α is 0.1 and 10, respectively. The GIN achieves better
performance (average F1 is 0.92) when α is 10 than the
performance when α is 0.1 (average F1 is 0.89). Our proposed
dynamic clustering-based federated graph learning method
achieves the best performance with different GNN models.

Efficacy Evaluation. Compared to baselines, our Fex-
IoT achieves the best performance because of the design
consideration of fine-grained homogeneous data features in
heterogeneous data distribution. For example, for FexIoT, the
accuracy is 0.891 and 0.919 when α is 0.1 and 10, respectively.
For GCFL+, the accuracy is 0.852 and 0.889 when α is 0.1
and 10, respectively. The accuracy of FedAvg is 0.717 and
0.768 when α is 0.1 and 10, respectively. The average client
accuracy is 0.542 and 0.622 when α is 0.1 and 10, respectively.
FexIoT improves the accuracy by 17.4% compared with the
FedAvg. FedAvg is deeply affected by the data heterogeneity,
which leads to poor modeling performance with low accuracy
in FL training paradigms. By contrast, FexIoT can mostly
reduce the data heterogeneity effect among different datasets
by training on clusters with high homogeneity. We also com-
pare the performance of federated learning compared with
centralized training. We test the GIN model in centralized
training, which collects all data from clients to train a GIN
model. The centralized training achieves 0.944 F1 value, while
our federated GIN model achieves 0.91 average F1 value over
five data distributions. Overall, our proposed FexIoT can better
depict the homogeneity of the GNN models learned from
different data distributions than the coarse-grained ones.

Stability Evaluation. The clustering-based methods (Fex-
IoT, GCFL+, and FMTL) can achieve better and more stable
performance than FedAvg and single-client training. For exam-
ple, with our proposed algorithm, the average accuracy of GIN
under five different data distributions is 0.907, and the standard
deviation (STD) is 0.01. For FedAvg, the average accuracy is
0.738, and the STD is 0.017. The performance of FedAvg is
more divergent according to the data distribution of each client.
Similarly, the performance of self-training in each client is also
affected by different data distributions. Besides, our FexIoT
outperforms the state-of-the-art method GCFL+, which has
an average accuracy of 0.87 and STD is 0.012. Facing the
heterogeneity in datasets, the GCFL+ considers the similarity
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(d) GIN F1
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(e) GCN Accuracy
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(f) GCN Precision
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(g) GCN Recall
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Fig. 4: The performance of two GNN models under five different Dirichlet distribution parameters α.
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Fig. 5: The test accuracy of client models with different
numbers of clients participating in training with the IFTTT
dataset (left) and heterogeneous graph dataset (right).

of parameters of a whole model, which can be fluctuating
due to the changes in parameters of different layers of client
models. By contrast, our FexIoT implements clustering based
on fine-grained bottom-up layer-wise parameters, which is less
affected by fluctuating layers. Overall, our FexIoT is more
stable under different data distributions than other FL methods.

Scalability Evaluation. We simulate different numbers of
clients (25, 50, 75, 100) joining the FexIoT on two datasets.
We use GIN on the IFTTT dataset and MAGNN on the het-
erogeneous graph dataset if not mentioned. The concentration
parameter α of the Dirichlet distribution is 1. Figure 5 is a box
plot, in which minimum, maximum, median, first quartile, and
third quartile accuracy are reported. On the IFTTT dataset, the
third quartile accuracies of 25, 50, 75, 100 clients are 0.869,
0.879, 0.882, and 0.873, respectively. Therefore, even though
the number of clients increases, 75% of clients can achieve
more than 86% accuracy, which shows the high scalability
of FexIoT. When the number of clients is larger (e.g., 100),
the results show more divergence as the minimum accuracy is
0.8, and the maximum accuracy is 0.977. When the number
of clients increases, due to the fixed size of the entire dataset,
the size of the dataset for each client decreases, which affects
the evaluation results. Nevertheless, the results show that
FexIoT can effectively aggregate clients that have similar data
distribution to boost the model performance.

TABLE II: Comparison of different systems with testbed data.

Method Accuracy Precision Recall F1

HAWatcher [13] 0.82 0.83 0.87 0.85
DeepLog [20] 0.74 0.78 0.79 0.78
IsolationForest [53] 0.63 0.74 0.61 0.67
FexIoT 0.9 0.9 0.93 0.91

Drifting Interaction Pattern Evaluation. The methods that
rely on known patterns will become fruitless when there are
drifting samples. Therefore, we need to identify the possible
drifting graph samples with unknown interaction patterns. We
evaluate drifting interaction pattern detection on the unlabeled
dataset, to check if the randomly generated graph dataset
contains drifting samples. We show the clustering results in
Figure 6 on 1500 randomly sampled graph feature repre-
sentations learning with federated contrastive graph learning.
The data is processed with TSNE dimension reduction. The
centroid of each class is the white cross, and the possible
drifting samples are in the red circle. The six types of known
interaction vulnerabilities are clustered in gray dotted boxes.
Through our federated contrastive learning, the model can
learn well the features of six types of vulnerability patterns and
the normal graph pattern, which are separable in hidden space
shown in Figure 6. Based on the drifting interaction pattern
analysis in Section III-C, we found 63 and 104 potential
drifting samples in the IFTTT dataset and heterogeneous graph
dataset, respectively. After manually checking, we found three
new types of vulnerability patterns: (i) Automation action
is reverted over time. (ii) Another action can generate fake
automation conditions. (iii) Non-automation settings can block
the existing actions of smart devices. In this way, FexIoT
can reduce the false-alarming rate while the security rule-
based querying methods in the traditional database cannot
discover new patterns and even incur high false-positive or
false-negative rates because of the drifting samples.

System Comparison. We compare FexIoT (trained with
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Fig. 6: K-means clustering on 1500 randomly sampled graph
representations with TSNE dimension reduction.

50 clients) with existing vulnerability detection systems: (i)
HAWatcher [13] is a search-based system that extracts secure
rule interaction templates and evaluates device interaction in
real-time. We use the extracted templates to discover vulnera-
bilities in the test dataset. (ii) DeepLog [20] models event logs
as a language sequence and uses Long Short-Term Memory
(LSTM) to learn log patterns. We train LSTM on normal
logs and find anomalies that deviate from the training data.
(iii) IsolationForest [53] is a density-based anomaly detection
method with a tree structure, which is implemented by Scikit-
learn [51], and the input is a data vector that includes device
status. We use 600 online interaction graphs in Section IV-A
that are integrated with event logs and descriptions as the
test dataset. The system performance is shown in Table II.
From the results, we find that all methods fail to differentiate
between normal user interruptions (e.g. manually turning on a
light) and malicious attacks, which cause false positives. Feed-
back from users should be provided to update such correlations
and reduce false alarms. FexIoT outperforms the existing
methods due to the following reasons: (i) HAWatcher only
extracts binary rule templates, which can hardly cover long-
term complex correlations such as the correlation between an
air conditioner and temperature events, and (ii) DeepLog and
IsolationForest cannot effectively mine interaction correlations
across different events.

Communication Cost Evaluation. We measure the com-
munication cost during the training process by computing
the total data transferred (download and upload) between the
server and clients. As shown in Figure 7, the total transferred
data is less than 40 GB in 60 rounds with 100 clients, which is
acceptable for wired network bandwidth. FexIoT saves 40.2%
communication overhead compared with FedAvg [52]. FedAvg
needs to aggregate the whole model during the FL process, and
FMTL [41] and GCFL+ [42] also share the whole model but
within different clusters. The low cost of FexIoT is attributed
to our proposed layer-wise clustering-based FL method. At
the initial stage, only the parameters of the first layer are
uploaded to a server for clustering. Then, based on the previous
clustering result, the upper layer parameters of models are
uploaded to the server, and the server sends parameters of
different layers back to the corresponding client clusters.
Clients in the same cluster share more layers than clients
that are in different clusters. Thus, it reduces the number of
parameters transmitted between the server and clients.
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Fig. 7: Communication cost with different numbers of clients.

D. Vulnerable Interaction Cause Analysis Evaluation

After vulnerability detection, we implement qualitative and
quantitative evaluations to show the efficacy and efficiency
of our vulnerable interaction explanation method. We ran-
domly choose 100 interaction graphs that contain vulnerable
interactions, which are reported by the GCN model on the
unlabeled IFTTT dataset. Among the 100 graphs, we identify
four graphs that are benign after manually checking, which
are false-positive results from the GCN model.

We compare our method FexIoT with two baselines of graph
explanation methods: SubgraphX [48] and MCTS GNN. Sub-
graphX is a general graph explanation method that applies
Monte Carlo tree search with shapely value to explore vari-
ous subgraphs, while MCTS GNN applies Monte Carlo tree
search with the prediction score of the GNN model to explore
subgraphs. Other graph explanation methods such as PGEx-
plainer [54] and GNNExplainer [55] can only identify discrete
edges or nodes, which cannot be used for the interaction
vulnerability explanation among nodes. The SubgraphX and
MCTS GNN are implemented by the DIG [56] library, and we
apply GCN as the vulnerability detection model and perform
the vulnerability analysis for both right and wrong predictions.

Example Illustration. To visually demonstrate the supe-
riority of our explanation method, we give two intuitive
examples in Figure 8. The first row illustrates the example
of the false positive of the GCN model prediction, while
the second row illustrates the correct prediction. For the first
row in Figure 8, the interaction graph is predicted to contain
vulnerable interactions, but it is deemed benign after manual
inspection. The interaction graph describes that when the door
opens, the water flow will run with the switch turned on with
a notification sent to users. The user can notify the app to
turn on the camera. Then, if the smoke is detected, the door
unlocks and the exhaust ventilation fan starts. This interaction
graph does not contain interaction vulnerabilities, as shown in
Figure 8, our FexIoT offers a minor misleading explanation
subgraph, as it only identifies the concise subgraph to explain
the prediction. By contrast, other methods try to find a larger
subgraph to explain the prediction result, which causes more
confusion for the inspector.

For the second example in Figure 8, the GCN model
prediction is correct. It describes that when the user taps to
turn off the camera, the camera will be turned off and the
action will be recorded in a Google spreadsheet. When a new
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Example 1: FexIoT explanation result Example 1: SubgraphX explanation result Example 1: MCTS_GNN explanation result

Example 2: FexIoT explanation result Example 2: SubgraphX explanation result Example 2: MCTS_GNN explanation result

Index Rule

23 Connect to the WiFi
47 Turn camera off
62 If fan runs, turn on water flow switch
174 Turn on cameras if lights are off
281 If smoke is detected, the fan starts
1076 Turn on air conditioner if plug is on
1177 Turn the camera on if get notified
1215 Tap to turn off camera
1291 Turn on plugs if door unlocked

2184
If smoke is detected, unlock
the door and start fan

Fig. 8: Vulnerability explanation results comparison and the text description for indexes.
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Fig. 9: The comparison of Fidelity and Sparsity scores.

spreadsheet subscriber is added, it will send a notification to
turn on the camera. FexIoT, SubgraphX, and MCTS GNN all
can recognize the key subgraph that causes the interaction vul-
nerability that turns off the camera within a loop. Overall, for
both cases, our FexIoT can provide a reasonable vulnerability
explanation with better visual explanations.

Fidelity and Sparsity. Besides the visualization to evaluate
the vulnerability explanation methods, we use the Fidelity and
Sparsity [57] to quantitatively measure the explanation results.
The Fidelity metric refers to the difference between two
prediction scores before and after removing a part structure
of a graph. The Sparsity metric refers to the percentage of the
structure that is recognized as important by the explanation
model. There is a trade-off between Fidelity and Sparsity. A
high Sparsity score means a smaller structure, which tends to
be low Fidelity (less important). For real-life cases that lack
the ground truth, the Fidelity and Sparsity scores can help
measure the explanation quality for the security inspector.

We test the Fidelity and Sparsity scores of 50 randomly-
picked interaction graphs. The scores depend on the structure
of interaction graphs, which fluctuate among different cases.
Half of the tested cases have relatively high Fidelity which is
greater than 0.3, and low Sparsity which is smaller than 0.7.
For better visualization, we plot the curve of Sparsity with
respect to Fidelity for four cases as shown in Figure 9. The
four cases have higher Fidelity and lower Sparsity, or lower
Fidelity and higher Sparsity. Our method FexIoT can strike
a decent balance between Sparsity and Fidelity scores, which
means FexIoT can accurately identify the concise subgraphs
that are the possible causes of the vulnerabilities. Overall,

TABLE III: Runtime efficiency with different datasets.

Graph Construction
Time (s)

Prediction
Time (s)

Vulnerability
Analysis Time (s) Model Size (MB)

IFTTT 17.19 0.52 2.18 5.48
Hetero. 976.99 0.61 3.64 6.13

the results indicate that our explanation method can find the
important yet concise subgraph for prediction explanation,
which is more faithful for interaction analysis.

Vulnerability Explanation Efficiency. As shown in Ta-
ble III, the 12,758 heterogeneous graphs generation takes 980s.
The size of the MAGNN model for heterogeneous graphs
is only 6.13MB, which makes it feasible to train the model
on devices such as a Raspberry Pi. The prediction time is
0.61s on average, which is related to the graph size. For
vulnerability explanation, the average cause discovery time is
3.64s for an interaction graph. It takes 182s for 50 graphs
with 18 nodes on average. Note that the time is related to the
algorithm parameters such as the number of MCTS iterations,
and the kernel SHAP samples. Overall, the FexIoT achieves
vulnerability prediction and explanation with high efficiency.

V. RELATED WORK

Code-based Vulnerability Analysis. IoT interaction vul-
nerability has drawn much attention in recent years. Table IV
summarizes the main features of FexIoT in comparison with
five interaction vulnerability analysis systems. Many IoT in-
teraction vulnerability analysis systems [10]–[13] rely on the
source code analysis. For example, Celik et al. [10] presents
SainT, which performs static analysis to identify sensitive
data flows. ProvThings [11] and IoTGuard [12] apply code
instrumentation to generate fine-grained event logs for IoT au-
diting. However, the existing studies neglect the closed-source
nature of most platforms, which limits the application of code
analysis-based methods. Besides, some approaches [14] are
based on dynamic testing, which can hardly cover all testing
cases and cause security issues during real-life testing. Fur-
thermore, most existing interaction analysis systems assume
all rules run on a single platform, which is not necessarily true.
82.4% smart home deployments have multiple automation
rules to control a device, and 62.4% users deployed more than
one platform according to an online survey [2]. Thus, these
methods that rely on source code analysis cannot analyze the
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TABLE IV: Comparing to existing IoT interaction vulnerability analysis systems

System Source Code Dynamic Test Long-term Correlation Cross-platform Interaction Method

IoTGuard [12] Yes Yes No No Code instrumentation
HAWatcher [13] Yes No No No Code analysis & Log analysis
IoTSafe [14] Yes Yes No No Static analysis & Dynamic testing
iRuler [31] No No Yes No SMT solver & Model checker
IoTMon [58] Yes No Yes No Code analysis & Text analysis
FexIoT (Ours) No No Yes Yes NLP & Federated GNN models

interactions across multiple closed-source platforms. Finally,
FexIoT considers the long-term correlations by encoding time
information in the node features, so the GNN model can mine
the temporal correlation among different rules.
Learning-based Vulnerability Analysis. Many researchers
adopt machine learning methods [19]–[21] to detect vulner-
abilities in various systems. For instance, Zhou et al. [21]
propose to use LSTM neural networks to learn the historical
correlation of log patterns and then detect anomalies. Yang et
al. [59] propose to add knowledge on historical anomalies
via probabilistic label estimation. But existing methods can
hardly mine the complex interaction logic of apps [13] from
only event log sequences. Moreover, compared with semi-
supervised learning or unsupervised learning in anomaly de-
tection, supervised learning can be more accurate because it
can optimize performance using labeled data. It is hard to
accurately analyze the specific threat causes with unsupervised
learning on interaction graphs. With graph representation
learned from supervised learning, FexIoT provides a reliable
way to automatically pinpoint the possible causes of vulnera-
ble interaction in large and complex graphs.
Federated Graph Learning. FL is to collaboratively train
a shared prediction model without storing the data centrally.
Recent studies [60]–[65] have explored the system and data
heterogeneity in FL. FedProx adds weights to aggregate differ-
ent clients [60], but choosing weights for different applications
is challenging. Another method is to share local device data
or server-side proxy data [61] to deal with data heterogeneity,
but it requires knowledge of local data distributions. Some
researchers propose to bound gradients [66] or add additional
noise [67] to guarantee convergence, which will increase
training time and decrease model accuracy. GNN models [68]–
[71] have demonstrated exceptional performance in a variety
of tasks including graph or node classification. The GNN
model can mine the dependencies among nodes in a graph, and
map graph information into a graph embedding. Many recent
works [72]–[76] apply the FL on GNN models. For instance,
GraphFL [72] is an FL framework based on meta-learning
for semi-supervised node classification. However, besides the
feature and label heterogeneity, the graph data could contain
non-i.i.d. structural information, which will degrade the learn-
ing performance [42]. By contrast, our proposed layer-wise
clustering-based federated graph learning method can mitigate
the heterogeneity among different clients.

VI. DISCUSSION AND FUTURE WORK

Security and Privacy. We acknowledge that FexIoT faces
security and privacy challenges. Particularly, it might suf-

fer from Sybil attacks [77]–[80] when an attacker controls
multiple clients to attack the system. One possible solution
is to enhance the software and network security (e.g., using
firewalls, CAPTCHAs, or device-specific asymmetric keys) in
smart homes to protect the internal FL model. Moreover, there
are several defense methods that can identify Sybil attacks
based on the diversity of client updates [78], training loss from
randomly selected clients [79], and feature importance [80],
which could be integrated into FexIoT. To enhance the data
privacy, we will add differential privacy [81]–[83] and secure
aggregation mechanisms [84]–[86] to FexIoT in the future.

Data Labeling. Providing ground truths is necessary for
scientific evaluation. Existing works [87]–[89] have proposed
methods for efficient data annotation. In this work, we man-
ually labeled the dataset with cross-validation. In the future,
we plan to combine experts, amateurs, and ML models for
cross-validation to further enhance the quality of labels for IoT
data. For example, experts can label a few samples and develop
few-shot learning-based models. ML models and amateurs can
collaboratively label new data. Iteratively, the newly labeled
data could be used to re-train the model.

VII. CONCLUSION

In this paper, we investigate how IoT rule configuration
data could expose interaction vulnerabilities across heteroge-
neous closed-source platforms. We present and implement a
novel IoT data management solution, FexIoT, that leverages
federated and explicable graph learning to analyze large-scale
IoT interaction data. We propose a cross-modality data fusion
method to cope with the information deficiency problem in
closed-source platforms. We design the fine-grained dynamic
clustering-based federated contrastive graph representation
learning algorithm to discover interaction vulnerabilities and
tackle the concept drift problem of smart home data. We
propose the MCBS-based search method with SHAP value
to search and measure the risk of each subgraph. With the
data collected from 5 real-world IoT platforms, we demon-
strated the superior performance of FexIoT in detecting and
explaining the interaction vulnerabilities.
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puto, “Cluster-driven graph federated learning over multiple domains,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 2749–2758.

[75] C. Meng, S. Rambhatla, and Y. Liu, “Cross-node federated graph neural
network for spatio-temporal data modeling,” in Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
2021, pp. 1202–1211.

[76] H. Peng, H. Li, Y. Song, V. Zheng, and J. Li, “Differentially private fed-
erated knowledge graphs embedding,” in Proceedings of the 30th ACM
International Conference on Information & Knowledge Management,
2021, pp. 1416–1425.

[77] J. R. Douceur, “The sybil attack,” in International workshop on peer-
to-peer systems. Springer, 2002, pp. 251–260.

[78] C. Fung, C. J. Yoon, and I. Beschastnikh, “The limitations of federated
learning in sybil settings,” in 23rd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2020), 2020, pp. 301–316.

[79] Y. Jiang, Y. Li, Y. Zhou, and X. Zheng, “Sybil attacks and defense
on differential privacy based federated learning,” in 2021 IEEE 20th
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom). IEEE, 2021, pp. 355–362.

[80] C. Zhou, Y. Sun, D. Wang, and Q. Gao, “Fed-fi: Federated learning ma-
licious model detection method based on feature importance,” Security
and Communication Networks, vol. 2022, 2022.

[81] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[82] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek,
and H. V. Poor, “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 3454–3469, 2020.

[83] W. Liu, J. Cheng, X. Wang, X. Lu, and J. Yin, “Hybrid differential
privacy based federated learning for internet of things,” Journal of
Systems Architecture, vol. 124, p. 102418, 2022.
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