ECE 491F: Computer Software - AI security Syllabus

In this 3-credit course, we will explore the hottest topic in the security community – Al security. You will build on your first experience of hacking Al models, in a way of crafting adversarial examples, and poisoning datasets to get backdoors of Al systems, and explore the up-to-date research papers on designing different safeguard mechanisms.

Aim: for students to gain the knowledge and insights to read and reproduce AI security papers.

Instructor:

Prof. Hanqing Guo guohanqi@hawaii.edu

Course website:

 The course webpage (TBA) contains links to notes, recordings, and additional materials

Resources:

Introduction to AI <u>Stanford CS231n</u> Introduction to AI safety <u>Stanford CS120</u> Awesome Adversarial attacks: <u>Adversarial papers</u> Awesome Backdoor attacks: <u>Backdoor papers</u>

Pre-requisites:

Solid coding background (Python, PyTorch, bash, git)

Course Schedule

	Topics covered	Reading	Notes		
Introduction					
Week 1	Introduction. Course overview. Deep Learning basics.				
Week 2-3	Deep learning training basics. Primer on Pytorch, Colab;	BuildCNN_Pytorch			
Adversarial Attack and Defenses					

Week 4	White-box Adversarial Attack	Intriguing properties of neural networks	Reading report 1
Week 5	Black-box Adversarial Attack	Practical Black-Box Attacks against Machine Learning Sign-opt: A query-efficient hard-label adversarial attack	
Week 6	Adversarial Attack defenses	Adversarial attacks and defenses in deep learning: From a perspective of cybersecurity	Reading report 2
Week 7-8	Paper reading and Code Reproduction	FGSM_Pytorch	Project 2
	Backdoor Attack a	and Defenses	
Week 9	Backdoor Attack Basics	Badnets: Evaluating backdooring attacks on deep neural networks	
Week 10-11	Dirty label and clean label Backdoor Attacks	Clean-label backdoor attacks	Reading report 3
Week 12	Backdoor Attack Defenses	Neural cleanse: Identifying and mitigating backdoor attacks in neural networks	
Week 13	Paper reading and Code Reproduction	BackdoorBox	Project2
	AI security app	olications	
Week 14	Watermarking – Protect model stealing	<u>Black-box dataset</u> ownership verification via backdoor watermarking	
Week 15	Watermarking – Protect IP leakage	<u>An</u> <u>undetectable</u> watermark for <u>generative image models</u>	
Week 16	Project presentation	Final project	Reading report 3

Logistics

There is no paper final exam. Instead, you will need to present your final project. All deadlines TBD.

Grading

Reading Report	30%
Project	30%
Attendance	10%
Final Report/Presentation	30%

Assignments Guidelines:

- Unless otherwise specified, all assignments and projects are individual work.
- Assignments and Late Penalty: Assignments and projects will be posted at the class web site. Assignments & projects are due before the beginning of the class on the due day. See Topics and Notes for the due dates. Points will be deducted from late assignments: 50% for the first 24 hours after the due time, 100% after that. No extension will be granted except for documented emergency.
- <u>Starting to work on the assignments as early as possible.</u>
- <u>Identification page</u>: All assignments must have <u>your name</u>, and course number at the top of the first page.
- Please staple all the pages together at the top-left corner.
- Example reading/code reports(<u>template</u>):
- Final report example:
- https://arxiv.org/pdf/2303.10137

Policies:

- Attendance Policy: I will check the attendance for every class. If you miss a class without reasonable excuse, your missing will be recorded.
- If you think you have lost some points due to grading errors, make sure you
 approach the instructor within a week after the assignment, project, or test is
 returned to you.
- To get the most out of this class, you need to read the reading materials and spend time using computers regularly. Be prepared for a class by preview the material to be covered in that class and participate in discussions and problemsolving exercises, if applicable, in the class.
- Academic dishonesty will not be tolerated in any form. The integrity of our program depends on the integrity of the work done by each student. The University expects a student to maintain a high standard of individual honor in his/her scholastic work. Please refer to UH Student Conduct Code at <u>http://www.studentaffairs.manoa.hawaii.edu/policies/conduct_code/</u> for Acade mic Honesty, Cheating, Plagiarism, Disciplinary Action, etc.